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Motivation

Block maxima method:
• A classical method in extremes.
• Recently, new insights were gained by regarding

the block size parameter as a sequence converging
to infinity [3].

• Certain estimators based on the sliding block
maxima method were found to provide lower
estimation variances [1,2].
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U-statistics:
• Constitute a broad class of statistics that are

known to satisfy certain optimality conditions in
classical situations.

• Some common estimators like the PWM-
estimator for block maxima may be identified as a
U-Statistic.

Aims

• Derive asymptotic theory for U-Statistics
applied to (multivariate) block maxima.

• Compare disjoint and sliding blocks estimators
theoretically and by means of Monte Carlo
simulation studies.

Model

• Observations: Excerpt of a strictly stationary
d-variate time series X1, . . . , Xn.

• Block maxima: Mr,i denotes the
componentwise block maxima of block length
r = rn → ∞ starting at time i.

• Multivariate domain of attraction condition:M
(j)
r,1 − b(j)

r

a
(j)
r


j=1,...,d

d−→ Z,

as r → ∞, for certain (br)r, (ar)r.

• Block maxima samples: Obtain the disjoint
and sliding sample M(db) = (Mr,1+ri)i=1,...,m,
M(sb) = (Mr,i)i=1,...,n−r+1.

Objects of interest

• Kernel function h : R2d → R with enough
regularity including the existence of functions f, ℓ
such that, for all x, y, b ∈ Rd, a ∈ (0, ∞)d,

h

(x − b
a ,

y − b
a

)
= h(x, y)

f (a, b)
+ ℓ(a, b).

• U-statistic induced by h:

U (mb)
n,r :=

nmb

2

−1 ∑
1≤i<j≤nmb

h(Mr,i, Mr,j) ,

for mb ∈ {db, sb} and nmb the respective block
maxima sample size.

• Target parameter: U (mb)
n,r is an estimator for

θr :=
∫

h(x, y) dP⊗2
Mr,1

(x, y),

but under dependence generally not unbiased.

Theorem (Bücher, S., 2023)

Under certain regularity conditions it holds, that
√

m

f (ar, br)
(U (mb)

n,r − θr) d−→ N (0, σ2
(mb)),

where σ2
(sb) ≤ σ2

(db).

• Disjoint variance σ2
(db) is described by a term

from asymptotic U -statistic theory and the EVD
Z.

• The sliding variance has a component
quantifying asymptotic overlap Zξ and a
U -statistic component, where Zξ is a 2d-variate
EVD and its distribution can be described via
PZ. This generalizes a well known univariate
overlap copula from [1].

Examples

• Variance estimation: the empirical variance is
a U-statistic with kernel hVar(x, y) = (x − y)2/2
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• Estimation of Kendall’s τ : for bivariate block
maxima we have, using the concordance kernel
hτ(x, y) = 1

(
(x(1) − y(1))(x(2) − y(2)) > 0

)
,

√
m
(
τ̂ (mb)

n,r − τr

)
d−→ N (0, σ2

(mb)).

• Other estimators: in the literature similar
effects were observed, e.g., for the PWM
estimator [2].

Simulation studies

Variance estimation:
• The sliding blocks estimator performs signifi-

cantly better than its disjoint blocks version.
• Both for serial independence and strong serial

dependence, the estimators show qualitatively
similar behaviour.
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Figure: Relative MSEs for the estimation of σ2
r in an

(transformed) ARMAX(1) model with parameter 0.75 plotted
against the number of seasons m for the disjoint and sliding
blocks estimator σ̂2

n,r,(db), σ̂2
n,r,(sb) and different shape parameters

γ, respectively.

Estimation of Kendall’s τ :
• Also better performance when using sliding

blocks.
• The stronger the dependence between the

margins, the smaller the improvement.
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Figure: Relative MSEs of disjoint and sliding blocks estimators
plotted against the number of seasons m.

Extensions

• The results hold under the assumption of
β-mixing with rate, but generalizations
regarding α-mixing are possible.

• The results may also be extended to the
framework of piecewise stationary time series
which was recently embedded into extreme
value statistics and potentially offers more
realistic seasonal modelling [2].

Conclusion

For the broad class of U -statistics of block maxima,
statistics based on sliding blocks exhibit better asymp-
totic properties than their disjoint counterparts. The
superiority is visible in finite sample situtations and
especially for small sample sizes.
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