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Extreme observations |

Artificial dataset of daily observations

365 730 1095 1460 1825 2190 2555 2920 3285 3650
Day
Restriction to daily observations from the summer seasons
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Extreme observations ||
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e Statistics of time series extremes
disjoint and sliding block maxima

o U-statistics
classic setting and weakly dependent data

e U-statistics of block maxima
asymptotic normality and comparison of block methods
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Statistics of time series
extremes



Foundation for block maxima

Theorem (Fisher-Tippett-Gnedenko, 1928-1943): Suppose the X; are
i.i.d. ~ F, there are normalizing sequences a, > 0, b, € R and a
non-degenerate limiting distribution G satisifying

Ml:r - br d
Sz 4,6,
a, r—oo

where My., ;= max(Xi, ..., X;). Then G ~ GEV(u, o,~) for a shape
parameter v € R depending on F and location-scale parameter
w0 € R x RT.

5/15



Foundation for block maxima

Theorem (Fisher-Tippett-Gnedenko, 1928-1943): Suppose the X; are
i.i.d. ~ F, there are normalizing sequences a, > 0, b, € R and a
non-degenerate limiting distribution G satisifying

Ml:r - br d
Sz 4,6,
a, r—oo

where My., ;= max(Xi, ..., X;). Then G ~ GEV(u, o,~) for a shape
parameter v € R depending on F and location-scale parameter
w0 € R x RT.

Maximum Domain of Attraction condition: There exist sequences
a, >0,b, € R and a v € R such that

max{Xl,...,Xr}—b, d

a, r—oo

GEV(9). (DoA)
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Types of block maxima |

o X1, Xa,...,X, excerpt from a stationary time series satisfying (DoA)

Definition: Define M := max (X(;_1).r41, .-, Xr.;) as the (i—th)
disjoint block maximum, for i =1,...,n/r.

The Disjoint Block Maxima Sample

0.5
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Types of block maxima Il

o X1, Xa,...,X, excerpt from a stationary time series satisfying (DoA)

Definition: Define /\/Iff’, = max (Xj,...,Xit,—1) as the (i—th) sliding
block maximum, fori=1,...,n—r+ 1.

The Sliding Block Maxima Sample
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U-statistics




U-statistics |

Estimation Problem:

e F unknown c.d.f. from a c.d.f.-class F and for known
p €N, h: R” — R one can write:

0 =0(F) = / /Xla---, )dF(xa), .. dF(x)) = E[h(Z1, ..., Z,)],

if Z),...2, ~ Fiid.
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U-statistics |

Estimation Problem:

e F unknown c.d.f. from a c.d.f.-class F and for known
p €N, h: R” — R one can write:

0 =0(F) = / /Xla---, )dF(xa), .. dF(x)) = E[h(Z1, ..., Z,)],

if Z1,...2Z, ~ Fiid.
Examples:
o § =E[Z] for h(x) =x,p=1.
e 0 =Var(Z;) for h(x,y) = (x — y)?/2,p = 2.
e Probability weighted moments.

o If Z; are R?—valued: Covariance, Kendall's 7.
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U-statistics |

Estimation Problem:

e F unknown c.d.f. from a c.d.f.-class F and for known
p €N, h: R” — R one can write:

0 =0(F) = / /XL---, )dF(xa), .. dF(x)) = E[h(Z1, ..., Z,)],

if Z1,...2Z, ~ Fiid.
Examples:
o § =E[Z] for h(x) =x,p=1.
e 0 =Var(Z;) for h(x,y) = (x — y)?/2,p = 2.
e Probability weighted moments.

o If Z; are R?—valued: Covariance, Kendall's 7.

How to estimate 07
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U-statistics |l

Definition and Theorem (Hoeffding 1948): For a kernel function

h:R?> - R .
n
Un = (2) Z h(ZHZJ)

1<i<j<n

is called U-statistic (of order 2 with kernel h). Under a non degeneracy
condition and if the Z; are i.i.d. it holds that

Vn{U, — 6} ~ N(0,5°),

where o2 depends on h and F.
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U-statistics |l

Definition and Theorem (Hoeffding 1948): For a kernel function

h:R?> - R .
n
Un = (2) Z h(ZHZJ)

1<i<j<n

is called U-statistic (of order 2 with kernel h). Under a non degeneracy
condition and if the Z; are i.i.d. it holds that

Vn{U, — 6} ~ N(0,5°),

where o2 depends on h and F.

Extensions to dependent data:
o x/1-mixing (1972 Sen).
e [S—mixing (1976 Yoshihara).

e a—mixing (2010 Dehling, Wendler).
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U-statistics of extremes




Object of interest

Plug block maxima into a u-statistic:

~ —1
mb .__ n mb mb
Un,r T (2) Z h(Mr,i 7Mr,j )’

1<i<j<i

where mb € {db, sb}, i = number of blocks.
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Object of interest

Plug block maxima into a u-statistic:
P
b. b b
o= (3) X b
1<i<j<i

where mb € {db, sb}, i = number of blocks.

Objectives:

e Asymptotic distribution/variance

e Comparison between disjoint and sliding
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Kernel transformation condition

Problem:
Only the rescaled block maxima Zmb : (l\/lmb b.)/a, have
distributional limits and in general h(/\/lmb Mmb) # h(ZIP, Zp).

r, r,
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Kernel transformation condition

Problem:

Only the rescaled block maxima Zmb : (l\/lmb b.)/a, have
distributional limits and in general h(/\/l;“,b, Mmb) # h(ZIP, Zp).
Solution:

Suppose h satisfies the following kernel transformation condition:

(Simplified) Kernel condition: There exists a function f: Rt — R*
such that for be R, a >0, m;,m € R

h (mla_ b '"23_ b> = h(";z;;"z). (KT)
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Kernel transformation condition

Problem:
Only the rescaled block maxima Zmb : (l\/lmb b.)/a, have
distributional limits and in general h(/\/lmb Mmb) # h(ZIP, Zp).

r,

Solution:
Suppose h satisfies the following kernel transformation condition:

(Simplified) Kernel condition: There exists a function f: Rt — R*
such that for be R, a >0, m;,m € R

h (mla_ b '"23_ b> = h(";z;;"z). (KT)

Examples:
e variance kernel, PWM, Kendall's 7, covariance
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Main result

Theorem (Biicher, S., work in progress) Under regularity conditions
including (KT) we have for a strictly stationary time series (X,),
satisfying (DoA)

ume — E[Umb

W f(ar) ~ N(ngﬁmb)»
and assuming a bias condition:
ymb
W' { f(’;rr) - 9} ~ N(B,Urznb),

where £ is from the (KT) condition, B the asymptotic bias and
0 := E[h(Z1, Z>)] with Z1,Z, ~ GEV() i.i.d. 02, depends on h, mb, and
7 from (DoA). Furthermore it holds that 03, > 02
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Main result

Theorem (Biicher, S., work in progress) Under regularity conditions
including (KT) we have for a strictly stationary time series (X,),
satisfying (DoA)

Upe — E[UR?
\/n/r- W ~ N(0,02),
and assuming a bias condition:

mb

W' { fl?;rr) - 9} WN(B’UEnb)7

where £ is from the (KT) condition, B the asymptotic bias and
0 := E[h(Z1, Z>)] with Z1,Z, ~ GEV() i.i.d. 02, depends on h, mb, and
7 from (DoA). Furthermore it holds that 03, > 02

e Most of the time 03, > 02.
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Theoretical comparison for the variance-kernel

Variance kernel h(x,y) = (x — y)?/2, plot of ratio 03, /02,

1.6+

=
i

Ratio of Asymptotic Variances
[
)

1.0 | i i i i i
-0.5 -0.4 -0.3 -0.2 -0.1 0.0
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Generalizations

e The Xi,..., X, may be an excerpt of a piecewise stationary time series:
(Xla e aXn) = (Yl(l)a LR Yr(1)7y]_(2)a ) Yr(2)7
yim o ymy,

ey

e X; may be multivariate and the kernel R?—valued.

e U-statistic may be of higher order.
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e Analyzed u-statistics where we plugged in block maxima.
e Established asymptotic normality.

e Sliding is preferable over disjoint.
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Thank you!
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Asymptotic variances

ogy := 4 Var(hy(Z1)),
where 7y, Z, ~ GEV(7) i.i.d. and hi(z) := E[h(z, Z2)].

1
o3, ::8/ Cov (hy(Zie, h(Z2¢)) dE,
0

where (Z1¢,2Z>¢) ~ G, ¢ and G, ¢ is a bivariate extreme value
distribution with GEV(+) marginals and a certain Pickands-dependence
function A¢. £ governs the overlap between Z; ¢ and Z, ¢ meaning that
there is an ((1 — &) A 0)%-overlap.
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Proof ideas of main result

e Decompose U, , into projected term

57
A, = ﬁ; hl,r(Zr,i)
and degenerate term
2
Bn === h rZriaZr.'7
n(n—1) Z~2’( i Zrj)
1<i<j<n
where
h17,(z) = E[h(z, Z,’l)] — E[h(an, Zryg)]

and
ha.r(x,y) = h(x,y) = h1,/(x) = h1,(y) — E[h(Z, 1, Z, 2)]-

e B, Bo: long range independency, Bradley-coupling, stochastic
continuity type arguments .
o A, LN blocking of blocks (long range independency), wichura

strategy.
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e Estimating the asymptotic variance.

e Choosing the block size r in finite sample situations.
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Literature: u-statistics of extremes

Existing literature

e similar object extremal u-statistic: consider h,(x1,...,x,) for r — cc.
(2001 Segers)

e recently (2022 Oorschot, Segers, Zhou) asymptotic theory for extreme
U-Statistics.

e no (direct) literature on u-Statistics of block maxima.

e recently (2023 Dehling, Giraudo, Schmidt) investigated u-statistics of
sample moments of blocks.
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