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Generated1 by the prompt: Create a happy machine kangaroo with a very heavy tail, wearing a shoe in
London, trying to pull itself out by the bootstraps in comic style
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Motivation: Extreme Value Statistics

• Extreme value theory is concerned with the tail of a distribution
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Motivation I: Extreme Value Statistics

• Extreme value theory is concerned with the tail of a distribution

• Problem: Bulk of the data is not in the tail

• Not to ignore: Events may be rare, but have a large impact: e.g. floods and earthquakes

→ Extreme Value Statistics is of high relevance

4



Motivation I: Extreme Value Statistics

• Extreme value theory is concerned with the tail of a distribution

• Problem: Bulk of the data is not in the tail

• Not to ignore: Events may be rare, but have a large impact: e.g. floods and earthquakes

→ Extreme Value Statistics is of high relevance

4



Motivation II: why bootstrapping?

Tukey once proposed to call the bootstrap in statistics shotgun as it could blow off the head of every
statistical problem if we as statisticians could stand the resulting mess.2

Indeed bootstrap consistency results often lead to

• confidence intervals
• estimators for asymptotic standard deviations of estimators
• statistical hypothesis tests

→ Aim: use bootstraps in extremes when asymptotic variances are out of reach

2See the acknowledgements in Efron (1979)
5
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Motivation III: why block maxima?

• From now on: tail = maximum of a block of a certain size (block length) of the sample:
Mr,t = max(Xt, . . . , Xt+r−1)

• if block size is large: results from extreme value theory3 state

∀t : L(Mr,t) ≈ GEV(θr),

where θr = (µr, σr, γ) ∈ R× (0,∞)× R are the parameters of the Generalized Extreme Value
distribution

• µr, σr are location-scale parameters, while γ4 determines the shape of the distribution

This gives rise to the block maxima methods: Disjoint and Sliding block maxima (more: later)

3Fisher-Tippett-Gnedenko Theorem
4extreme value index
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Motivation III: Why bootstrap block maxima?

Variance of block maxima based estimators5 might look trivial like

σ2
sb =


2

3γ3

(
−3g4I2,2 + 8g1g3I2,1 − 6g21g2I1,1

)
, γ > 0

8
γ2

(
Γ(−4γ)I2,2 − 2g1Γ(−3γ)I2,1 + g21Γ(−2γ)I1,1

)
, γ < 0

2ζ(3)− 48− 8
3
π2 + 32

3
log3(2)− 48 log2(2) + 96 log(2) + 16

3
π2 log(2), γ = 0

,

where gj := Γ(1− jγ), j < 1/γ;

Ii,k :=

∫ 1/2

0

(
α(j+k)γ(w)− 1

) {
w−jγ−1(1− w)−kγ−1 + w−kγ−1(1− w)−jγ−1

}
dw

and

αβ : (0, 1) → (0,∞), w 7→ αβ(w) =

 1−(1−w)β+1

w(β+1)
, β ̸= −1

− log(1−w)
w , β = −1

.

5Here: estimating the variance of a block maximum based on sliding block maxima
7
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Grab the free lunch and bootstrap sliding block estimators!
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Outline

Block maxima:

• Disjoint block maxima
• Sliding block maxima

Bootstrapping (sliding) block maxima:

• Naive approaches
• The circular block maxima approach
• Resampling algorithm
• Consistency results



Block maxima



Block maxima

Basic model assumptions:

• Strictly stationary time series excerpt Xn = (X1, . . . , Xn) with values in R and c.d.f. F.

• Short range dependency structures allowed
• F in the domain of attraction of Gγ , that is:

L
(
max(X1, . . . , Xr)

)
≈ GEV(µr, σr, γ)

Statistical challenges:

• Estimate γ (many estimators well known: Hill, PWM, (Pseudo-)MLE), extreme quantiles/return
levels

• Confidence intervals/Variance of Estimators ← our focus
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Disjoint block maxima

Observations x1, . . . , x12; block size r = 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

maximum

m
(db)
1

maximum

m
(db)
2

maximum

m
(db)
3

maximum

m
(db)
4

Disjoint block maxima sample M(db) = (m
(db)
1 , . . . ,m

(db)
4 )
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Sliding block maxima

Observations x1, . . . , x12; block size r = 3
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Bootstrapping block maxima



Statistical setting

Estimation of θr = E[h(Mr,1)]where h : R→ Rq satisfies minimal regularity conditions

• Obtain the following sensible estimators for θr

θ̂(mb)
n =

1

n(mb)

n(mb)∑
i=1

h(M
(mb)
r,i ), mb ∈ {db, sb},

where n(db) = n/r, n(sb) = n.

Aim: Bootstrap θ̂
(mb)
n − θr

12
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Naive approach I

Consider first θ̂
(db)
n

• Time series structure ⇝ have to bootstrap blocks of observations
• Bootstrap block size of r is natural
⇝ Draw with replacement6 from the sample of disjoint block maxima M(db)

Algorithm 1 Disjoint block maxima bootstrap

Require: n/r ∈ N,M(db) = (m1, . . . ,mn/r), B ∈ N
1: for b = 1 to B do
2: Draw n/r times with replacement from M(db) and concatenate to obtain m∗

b,1, . . . ,m
∗
b,n/r

3: Compute θ̂
∗,(db)
n,b = r/n

∑n/r
i=1 h(m

∗
b,i)

4: end for
5: return θ̂

∗,(db)
n,1 , . . . θ̂

∗,(db)
n,B ▷ Bootstrap replicates

6Multiplier bootstraps also possible
13
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Naive approach II

Does it work?

Yes; formally this means:

Theorem (Bücher and S., 2024) Under regularity conditions, as n→∞

dK
(
L
(
θ̂(db),∗
n − θ̂(db)

n | Xn

)
,L

(
θ̂(db)
n − θr

))
= oP(1).
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Naive approach III

Now consider θ̂(sb)
n

• Problem: sliding-max(x1, . . . , xr) does not make sense as opposed to its disjoint counterpart
• Instead one could draw r-blocks M

(sb)
Ii

= {m(sb)

(i−1)r+1, . . . ,m
(sb)
ir } of the sliding sample,

i = 1, . . . , n/r

Does this work?7

No!

7c.f. slide 26
15
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Circmax

Observations x1, . . . , x12; block size r = 3

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Divide observations into disjoint blocks of 2 ∗ r = 6

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12

Repeat first two (= r − 1) observations of each block of blocks at the end

x1 x2 x3 x4 x5 x6 x1 x2 x7 x8 x9 x10 x11 x12 x7 x8

slid-maximum slid-maximum

m
(cb)
1 m

(cb)
2 m

(cb)
3 m

(cb)
4 m

(cb)
5 m

(cb)
6 m

(cb)
7 m

(cb)
8 m

(cb)
9 m

(cb)
10 m

(cb)
11 m

(cb)
12

Circular block maxima sample M(cb) = (m
(cb)
1 , . . . ,m

(cb)
12 )

16
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Circmax II

The natural estimator for estimating θr is n−1 ∑n
i=1 h(M

(cb)
r,i )

Lemma (Bücher, S., 2024) Under regularity conditions, as n→∞,

Var(θ̂
(cb)
n )

Var(θ̂
(sb)
n )

→ 1.

17



Circmax bootstrap I

⇝ bootstrap θ̂
(sb)
n via θ̂(cb)

denote byM(cb)
i = {m(i−1)2r+1, . . . ,m2ri} the ith 2r block of the circmax sample; i = 1, . . . , n/(2r)

Algorithm 3 circmax block maxima bootstrap

Require: n/r ∈ N,M(sb) = (m1, . . . ,mn), B ∈ N
1: for b = 1 to B do
2: Draw n/(2r) times with replacement from {M(cb)

i : i = 1, . . . , n/(2r)} and concatenate to
obtain

3: m∗
b,1, . . . ,m

∗
b,n

4: Compute θ̂
∗,(cb)
n,b = 1/n

∑n
i=1 h(m

∗
b,i)

5: end for
6: return θ̂

∗,(cb)
n,1 , . . . θ̂

∗,(cb)
n,B ▷ Bootstrap replicates

18



Circmax bootstrap II

Does that one work?

Theorem (Bücher, S., 2024) Under regularity conditions, as n→∞

dK
(
L
(
θ̂(cb),∗
n − θ̂(cb)

n | Xn

)
,L

(
θ̂(sb)
n − θr

))
= oP(1).

• Allows for many applications: PWM-Estimator, Pseudo-MLE for Fréchet/GEV(γ), Moment
estimators for the block maxima distribution (mean, variance ...)

19
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Case Study

Confidence Intervals for the expected yearly maximum precipitation (in mm) at a fixed location8
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• Left: Estimates (lines in
the middle) and
confidence intervals
(ribbons) for the
estimation of θr = E[Mt]

• Right: Width of the
respective confidence
intervals

8Hohenpeißenberg, Germany; data from 1879–2023
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Conclusion



Conclusion

• Naive bootstrapping fails for sliding block maxima
• Introduced a new method circular block maxima
• Circmax enjoys advantages from disjoint and sliding world9

• Circmax based bootstraps are consistent for the sliding max estimation error

9small drawback: additional bias, but was found to be insignificant in simulation studies
21
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Generated10 by the prompt: Create a comic style picture of a very happy block which is sliding down a
slide shouting "thank you"
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Disjoint block maxima II

Notes about M(db):

• Only n/r = o(n) disjoint block maxima

• No overlap between between blocks (disjoint)

• Asymptotic independence between m
(db)
i ,m

(db)
j for i ̸= j (desirable property)

• Asymptotic theory for many estimators established (Ferreira, de Haan, 2015)
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Sliding block maxima II

Notes about M(sb):

• Small modification: repeat the first r − 1 observations at the end to ensure fair weighing

• After modifying we have n sliding block maxima

• Large overlap between blocks nearby

• Asymptotic dependence between m
(sb)
i ,m

(sb)
j for i ̸= j, which can be described by a

Marshall-Olkin type copula (in the one-dimensional case)

• Linear estimators based on sliding blocks have smaller variance than their disjoint counterpart:
(Zou et. al. 2021)

24



Circmax III

Notes about M(cb):

• Essentially combines disjoint block with sliding block method

• Size of the circmax sample is n

• Large overlap between blocks nearby (sliding effect) but no overlap between 2 ∗ r blocks (disjoint
effect)

• Repeating observations induces non-stationarity but does not hurt11

11does not hurt to much: asymptotic variance stays the same but there is negligible (compared to classical) bias
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Outlook

• Extendable to U-statistics of circular block maxima

• Extendable to non-stationary situations: piecewise stationary time series

• Purely of mathematical interest: one can define circular blocks with irrational outer block length
k ⇝ then circmax defines a spectrum of maxima methods with k = 1 corresponding to disjoint
block maxima k = n/r corresponding to sliding block maxima; non-trivial things happening for
k ∈ (1, 2)
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Example: MLE for Fréchet based on block maxima extracted from a time series

Statistical model:

• Xn = (X1, . . . , Xn) strictly stationary time series and R-valued
• Xn belongs to the Fréchet DoA, that is: ∃α0 > 0, (σr)r ∈ (0,∞)N, s.t.

max
(X1

σr
, . . . ,

Xr

σr

)
⇝ Pα0 ,

where Pα0 ∼ Fréchet(α0)

• Basic model assumptions still hold (block size, dependency structure)

• Goal: estimation of α0, σr

Good performing estimator (Bücher, Segers, 2018)

θ̂(sb)n := (α̂(sb)
n , σ̂(sb)

n )⊤ := argmax
θ=(α,σ)∈(0,∞)2

∑
Mi∈M(sb)

n,r

ℓθ(Mi ∨ c),

where c > 0 arbitrary, ℓθ denotes log-likelihood of Fréchet(α0, σ)
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Finite sample results

Bootstrap the variance of α̂(sb)
n (asymptotically: complicated function of α0)
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Bootstrapping the variance of the shape estimator (n = 1,000 fixed)

• variance of α̂(sb)
n obtained via

presimulating 106 time series of
sample size n = 103, calculating for
each sample α̂

(sb)
n and taking the

empirical variance (black dashed
line)

• different bootstrap procedures
displayed; based on B = 103

bootstrap replicates, N = 5 ∗ 103

repetitions (averaged)
• inconsistency of sliding visible
• circmax bootstrapping works
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Runtime comparison

In applications important: large bootstrap replicate numbers not too expensive

B = 250 B = 500 B = 750 B = 1000

0

1

2

3
T

im
e 

in
 s

ec
on

ds

Runtimes for Fréchet MLE

25 50 75 10
0

12
5 25 50 75 10
0

12
5 25 50 75 10
0

12
5 25 50 75 10
0

12
5

1

2

3

4

Effective sample size m

R
el

at
iv

e 
tim

e

Bootstrap cb(2) cb(3) sb db

Absolute and relative median runtimes of different bootstrap algorithms for bootstrapping θ̂
(mb)
n

(relative to the runtime of the disjoint blocks bootstrap) for fixed sample size n = 1, 000 as a function
of the effective sample size and for different numbers of bootstrap replicates B; based on 500 runs.
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