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Abstract

In both applications and statistics understanding of tail behavior is an important matter.
Estimators for tail characteristics may be obtained by the classical disjoint block max-
ima method. Recently, this method has been improved by considering so-called sliding
block maxima and desirable properties were shown in case-by-case analyses. Estima-
tors based on the latter method might exhibit a smaller variance while maintaining a
bias of similar magnitude. In this thesis, the block maxima methods are investigated
systematically for large classes of estimators in the context of dependent data. These
classes include so called U-statistics, a classical tool in non-parametric statistics. Limit
theorems are provided allowing for the quantification of estimation errors. Applica-
tions include the probability weighted moment estimator in extremes and Kendall’s
𝜏 of block maxima, a measure of tail dependence. In all situations the sliding block
maxima method is found to be superior to its disjoint counterpart. The findings are
extended to a setting of non-stationary time series and finite sample properties are in-
vestigated by means of Monte-Carlo simulation studies which confirm the theoretical
results.

While the sliding block maxima method offers the advantage of reduced variance,
deriving this variance explicitly can be challenging; the latter being important to ob-
tain confidence intervals for sliding block maxima estimators. This thesis proposes a
universal solution using novel bootstrapping methods tailored for general block max-
ima estimators, effectively eliminating the need for additional tuning parameters as
often encountered in bootstraps for time series. A byproduct of this development is a
new class of block maxima estimators. The asymptotic normality of these estimators
and the formal consistency of the proposed bootstrap methods are proven. Further,
the results are applied to estimators from extreme value statistics. The performance of
the methods is evaluated by large-scale simulation studies, and their practical utility is
demonstrated in a case study on precipitation data.

A key motivation for choosing the sliding block maxima method over its classic coun-
terpart is the fact that estimators based on the former method exhibit smaller asymp-
totic variances. In the situation of one-dimensional observations, these variances can
be represented as integrals over covariances of the well known Marshall Olkin bivari-
ate exponential distribution. Solving an open problem from the literature, the maximal
correlation coefficient of the latter distribution is derived and then applied, to provide
an alternative proof of the important variance inequality between disjoint and sliding
blocks based estimators.
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1 Introduction

Extreme value theory and statistics are concerned with describing, modelling and es-
timating extreme occurrences of probabilistic phenomena. These often correspond to
quantities exceeding critical levels. The effects of the latter can be catastrophic and have
a significant impact on society resulting in a demand for reliable statistical methodolo-
gies in order to mitigate these risks. Areas of risk range from extreme weather events,
such as hurricanes, floods, and heatwaves (Engeland et al., 2004; Shen et al., 2016), as
well as extreme financial events like maximal stock losses (Longin, 2000) to pandemic
modeling (Thomas et al., 2016) and size effect on material strength (Harter, 1978). For
example, assessing the time in which one expects a certain high flood level to be ex-
ceeded is of great importance in flood protection. Another example is given by the
capital reserves of banks which need to be sufficient to cover potential losses in case
of financial crises. A comprehensive introduction to these applications and theoret-
ical foundations can be found in Beirlant et al. (2004); Coles (2001); Embrechts et al.
(1997). The statistical analysis of extreme values poses significant challenges, as can
be seen from the following example, where the classical empirical quantile as an esti-
mator for the 99%-quantile fails: Consider the real-valued sample 𝑛 = (𝑥1, … , 𝑥𝑛) and
𝑞̂𝑛,.99 = inf{𝑥 ∈ R∶ 𝐹𝑛(𝑥) ≥ 0.99}, where 𝐹𝑛 denotes the empirical cumulative distribution
function of the sample 𝑛. For all 𝑛 ≤ 99 the quantile estimator 𝑞̂𝑛,.99 degenerates to
the maximum, i.e. 𝑞̂𝑛,.99(𝑛) ≡ max(𝑛), neglecting information contained in the sample.
This fundamental example illustrates that classical statistical methodology may fail in
extreme value theoretic frameworks where one needs to extrapolate from the bulk of
the data to the tail. An introduction to the topic of extreme value theory and statistics
is given by Beirlant et al. (2004).

Typically, modelling extremes is done by fitting distributions to the tail of the data
of which there are two fundamental regimes. The first dates back to Gumbel (1958)
in which the author laid the foundation for the so-called block maxima method: Consider
real-valued observations 𝑋1, … , 𝑋𝑛 and a block size 𝑟 ∈ N, 𝑟 ≤ 𝑛. The disjoint block maxima
sample (db) = (𝑚

(db)
𝑖 ∶ 1 ≤ 𝑖 ≤ ⌊𝑛/𝑟⌋) consists of the respective maximal observations of

the 𝑖th disjoint block, that is 𝑚(db)
𝑖 = max{𝑥𝑗 ∶ (𝑖 − 1)𝑟 + 1 ≤ 𝑗 ≤ 𝑖𝑟}; Figure 1.1 illustrates

this procedure.

The disjoint block maxima are then assumed to follow a certain three-parameter dis-
tribution allowing for using statistical methodology from the parametric toolbox. This
assumption is legitimized by the Fisher-Tippett-Gnedenko Theorem due to Fisher and Tip-
pett (1928); Gnedenko (1943): It states that if suitably normalized block maxima of in-
dependent and identically distributed (i.i.d.) random variables converge weakly to a
non-degenerate distribution, then the limit distribution is already a Generalized Extreme

1



1 Introduction

Observations 𝑥1, … , 𝑥12; block size 𝑟 = 3

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

maximum

𝑚(db)
1

maximum

𝑚(db)
2

maximum

𝑚(db)
3

maximum

𝑚(db)
4

Disjoint block maxima sample (db)
12 = (𝑚(db)

1 , … , 𝑚(db)
4 )

Figure 1.1: Illustration of the (disjoint) block maxima method.

Value (GEV) distribution with cumulative distribution function (cdf)

𝐺(𝑥) = 𝐺𝜇,𝜎,𝛾(𝑥) =
⎧⎪⎪
⎨⎪⎪⎩

exp
{
−(1 + 𝛾

𝑥−𝜇
𝜎 )

−1/𝛾
}
1(1 + 𝛾

𝑥−𝜇
𝜎 > 0), 𝛾 ≠ 0,

exp
{
− exp (−

𝑥−𝜇
𝜎 )

}
, 𝛾 = 0,

where 𝜇, 𝛾 ∈ R, 𝜎 > 0.
The GEV-distribution has three parameters, two of which are location, scale parame-

ters while the third parameter 𝛾 determines the shape of the tails and is thus also called
extreme value index. It parameterizes three families: 𝛾 < 0 corresponds to the (reverse)
Weibull distribution which has short (finite) tails, 𝛾 = 0 corresponds to the Gumbel dis-
tribution which has light (exponentially decreasing) tails and finally, 𝛾 > 0 leads to the
Fréchet distribution which has heavy (power-law) tails. The Fisher-Tippett-Gnedenko
Theorem has been generalized in different directions, one of which adresses serial de-
pendence. The Extremal Limit Theorem allows for replacing the i.i.d. assumption by a
short-range dependency structure, known as the 𝐷(𝑢𝑛) condition; (Leadbetter, 1974).
This framework was further extended to include the concept of asymptotic independence
of maxima in O’Brien (1987). These advancements have ensured that the block maxima
method remains a widely used approach in applications, such as modeling tempera-
ture maxima in climatology.

Statistical theory for estimators based on disjoint block maxima can be found for
example in Smith (1984); Bücher and Segers (2018b) for the maximum likelihood es-
timator (MLE) and in Hosking et al. (1985) where the probability weighted moments
(PWM) estimator based on block maxima was considered.

Next to the block maxima method, the competing classical tool for tail inference is the
peak-over-threshold (POT) method which is based on the works Balkema and de Haan
(1974); Pickands (1975) and was fully established mathematically after the work Smith
(1984), see also (Davison and Smith, 1990, Section 1). It considers observations exceed-
ing a certain high threshold chosen beforehand; see Figure 1.2 for an illustration.
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Time

Value

𝑥1

𝑥2

𝑥3 𝑥4
𝑥5

𝑥6
𝑥7

𝑥8
𝑥9

𝑥10

𝑥11

Threshold 𝑢
Exceedances

POT sample (pot) = (𝑥3, 𝑥4, 𝑥5, 𝑥10)

Figure 1.2: Illustration of the peak-over-threshold method.

The remaining observations are then assumed to follow a Generalized Pareto Distri-
bution, which is legitimized by the Pickands-Balkema-de Haan Theorem; (Balkema and
de Haan, 1974; Pickands, 1975). Literature on the POT method is well established, see
de Haan and Ferreira (2006) among others.

One is able to synthesize both the results of Fisher-Tippett-Gnedenko and Pickands-
Balkema-de Haan: under a mild regularity condition the suitably normalized sample of
block maxima is asymptotically GEV-distributed if and only if the suitably normalized
sample of exceedances is asymptotically GPD-distributed; (Pickands, 1975, Theorem 7).
In this case, the shape parameters for the GEV and GPD coincide.
Both fundamental principles require the choice of a tuning parameter, that is the thresh-
old and the block length for the POT method and the BM method, respectively. They
are of high importance as one needs to guarantee first, the asymptotic approximation to
be correct and second, the remaining sample to be large enough to mitigate increasing
variance which results in a bias-variance tradeoff for a fixed size of the original sample,
(Coles, 2001). For the POT principle there are well established methods at hand to do
so. The Hill plot consisting of plotting estimates against the threshold and choosing the
first occurring stability plateau (Drees et al., 2000). Also, there are formal approaches
based on minimizing the asymptotic MSE with regard to the threshold 𝑢; see Daniels-
son et al. (2001); Drees and Kaufmann (1998). While the same principle of stability plots
as for the Hill plot applies to the BM approach, often the block size is determined by
nature of the problem. For instance, yearly, monthly, or weekly temperature maxima.
Intuitively the BM method might seem inefficient or “wasteful” as the size of (db)

is of order 𝑛/𝑟 ≪ 𝑛, see e.g. Coles (2001, Section 4.1). However, Bücher and Zhou
(2021) presented situations in which the block maxima method outperformed the POT
method and vice-versa depending on the characteristics to estimate and the data gen-
erating processes. Nonetheless, practitioners use the block maxima method, see (Philip
et al., 2020, Sections 4.2.2, 4.2.3). Reasons for that comprise the following: First, as
stated before, block size choices might be more natural in climatology settings as op-
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1 Introduction

Observations 𝑥1, … , 𝑥12; block size 𝑟 = 3

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

maximum

𝑚(sb)
1

maximum

𝑚(sb)
2

⋱

maximum

𝑚(sb)
10

Sliding block maxima sample (sb) = (𝑚(sb)
1 , … , 𝑚(sb)

10 )

Figure 1.3: Illustration of the sliding block maxima method.

posed to setting a threshold; (Naveau et al., 2009; van den Brink et al., 2005). Secondly,
observations might only be accessible as maximal values over certain blocks because
underlying data is not available; (Kharin et al., 2007). Thirdly, when observations are
not exactly i.i.d. block maxima retain a certain robustness as e.g. dependence in blocks
is not harmful as long there is little dependence between blocks and the parameter of
interest is a functional of the block maxima distribution; (Katz et al., 2002; Madsen et al.,
1997). In contrast, the POT method would not allow for immediate estimation of, say,
return levels but require a transformation based on an estimation of the extremal index.
The latter parameter describes the tendency of extremes to appear in clusters; see Beir-
lant et al. (2004) for an introduction.

In contrast to the POT method, the block maxima method has only recently been
studied under the assumption that the approximation by the GEV distribution holds
asymptotically; a so-called (Max) Domain of Attraction (DOA) condition. In Dombry
(2015) the consistency of the MLE based on disjoint block maxima was proven, while
Dombry and Ferreira (2019) and Ferreira and de Haan (2015) established asymptotic
normality of the GEV ML and PWM estimators based on i.i.d. block maxima, respec-
tively. Extending these findings, a time series approach incorporating mixing condi-
tions has been implemented in Bücher and Segers (2014), Bücher and Segers (2018b),
Bücher and Segers (2018a). In line with this research, this thesis aims at establishing a
wide range of statistical verification of block maxima methods assuming the more real-
istic DOA condition and short-range dependent time series.

Further improvement of the block maxima method has been initiated by Beirlant
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et al. (2004), Robert et al. (2009) in which so-called sliding block maxima have been pro-
posed: Consider real-valued observations 𝑋1, … , 𝑋𝑛 and a block size 𝑟 ∈ N, 𝑟 ≤ 𝑛. The
sliding block maxima sample (sb) = (𝑚

(sb)
𝑖 ∶ 1 ≤ 𝑖 ≤ 𝑛 − 𝑟 + 1) consists of the respective

maximal observations of the 𝑖th sliding block, that is 𝑚(sb)
𝑖 = max{𝑥𝑗 ∶ 𝑖 ≤ 𝑗 ≤ 𝑖 + 𝑟 − 1}.

Figure 1.3 illustrates this procedure. The sliding block maxima sample retains more in-
formation than its disjoint version as (sb) contains (db). It is remarkable that under
the assumption of strictly stationary time series the sliding sample itself is still station-
ary and does not destroy temporal dependence which is the fundament of why sliding
blocks-based estimators work.

Asymptotically linear estimators based on sliding block maxima typically exhibit
the same bias as the respective disjoint counterpart while having a smaller variance;
(Bücher and Segers, 2018a; Bücher and Zanger, 2023) consider the heavy tailed MLE
for the GEV parameters or the PWM estimator, respectively. It is noteworthy that these
effects have not been observed in the POT framework; (Cissokho and Kulik, 2021; Drees
and Neblung, 2021). These findings point to numerous open research questions: First,
is one able to prove this behavior for a large class of estimators based on sliding block
maxima? Second, do the effects transfer to non-stationary situations? Third, does the
form of the variance allow for the simple construction of confidence intervals or boot-
strapping? Finally, is one able to introduce new block maxima methods which offer
further advantages? Recently, the last question has been partially answered by the con-
sideration of the all block maxima method in Oorschot and Zhou (2020) which dates back
to (Segers, 2001, Chapter 5); see Figure 1.4 for an illustration. In the second reference,
the author proved consistency of a U-statistics based estimator for 𝛾 . Proving asymp-
totic normality, in the first reference the authors showed that the (pseudo) ML estimator
for the shape 𝛾 in the heavy-tailed setting based on all block maxima outperformed the
disjoint and sliding block maxima based ML estimators in the sense, that the former had
a smaller asymptotic variance. However, as the estimator destroys serial dependence
clustering effects which might appear in time series are neglected. As a consequence
scale estimation or estimation of characteristics depending on the dependence structure
is not immediate; see (Oorschot and Zhou, 2020, p. 18).

The thesis presented here aims at answering the questions from the last paragraph
and providing statistical methodology on block maxima methods in time series ex-
tremes. To this end we present three articles:

The first article showcased in Chapter 3 allows for answering the first question above
by considering U-statistics of block maxima and estimators based on them.

Independently of each other U-statistics have been introduced in Halmos (1946) and
Hoeffding (1948). They can be understood as a generalized mean: Consider i.i.d. ob-
servations 𝑿1, … , 𝑿𝑛 and a symmetric function ℎ∶ R𝜌 → R, called kernel of order 𝜌 ∈ N.

5



1 Introduction

Observations 𝑥1, … , 𝑥4; block size 𝑟 = 2

𝑥1 𝑥2 𝑥3 𝑥4

Build all possible blocks of size 2

𝑥1 𝑥2

maximum

𝑚(all)
1

𝑥1 𝑥3

maximum

𝑚(all)
2

𝑥1 𝑥4

maximum

𝑚(all)
3

𝑥2 𝑥3

maximum

𝑚(all)
4

𝑥2 𝑥4

maximum

𝑚(all)
5

𝑥3 𝑥4

maximum

𝑚(all)
6

All block maxima sample (all) = (𝑚(all)
1 , … , 𝑚(all)

6 )

Figure 1.4: Illustration of the all block maxima method.

The characteristic of interest and assumed to exist is

𝜃 = E[ℎ(𝑿1, … , 𝑿𝜌)].

A natural estimator of this quantity is given by the expression

𝑈𝑛(ℎ) = (
𝑛
𝜌)

−1
∑
𝒊∈𝐽𝑛,𝜌

ℎ(𝑋𝑖1 , … , 𝑋𝑖𝜌), (1.1)

where 𝐽𝑛,𝜌 = {𝒊 ∈ N𝜌 ∶ 1 ≤ 𝑖1 < … < 𝑖𝜌 ≤ 𝑛}. The prefix 𝑈 stems from U-statistics being
unbiased. U-statistics appear in many situations: The classical mean estimator arises
from 𝜌 = 1, ℎ = idR; for 𝑘 ∈ N the 𝑘th moment estimator arises from 𝜌 = 1, ℎ(𝑥) = 𝑥𝑘;
the empirical variance arises when 𝜌 = 2, ℎ(𝑥, 𝑦) = (𝑥 − 𝑦)2/2. Considering multivariate
observations 𝑿𝑖 ∈ R𝑑 is also possible and one obtains for 𝑑 = 2, 𝜌 = 2, ℎ(𝒙, 𝒚) = 1{(𝑥(1) −
𝑦(1)) ⋅ (𝑥(2) − 𝑦(2)) > 0} the empirical Kendall’s 𝜏 to estimate the (monotone) dependence
coefficient 𝜏(𝑿) = 2P((𝑋 (1) − 𝑌 (1)) ⋅ (𝑋 (2) − 𝑌 (2)) > 0) − 1, where 𝑿, 𝒀 ∼ P𝑿1 . Furthermore,
for 𝑘 ∈ N0 the important class of 𝑘th probability weighted moment defined as

𝛽𝜂,𝑘 = E[𝑀𝐺𝑘𝜂(𝑀)],

where 𝜂 = (𝜇, 𝜎, 𝛾), 𝑀 ∼ GEV(𝜂), 𝐺𝜂 ∶= P(𝑀 ≤ ⋅), for 𝜇, 𝛾 ∈ R, 𝜎 > 0, might be estimated
via a U-statistic by letting 𝜌 = 𝑘 + 1,

ℎ(𝑥1, … , 𝑥𝑘+1) =
1

𝑘 + 1

𝑘+1
∑
𝑗=1

1

{
max

1≤𝑖≤𝑘+1,𝑖≠𝑗
𝑥𝑖 ≤ 𝑥𝑗

}

and substituting suitable block maxima for the 𝑥𝑖.
From now on, we will focus on the case 𝜌 = 2 as for higher degrees the arguments

stay the same but notation grows to be more opaque. Asymptotic normality of non-
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degenerate U-statistics has been established in Hoeffding (1948) by means of the so-
called Hoeffding-decomposition in an asymptotic linear part and a degenerate part van-
ishing with higher order, which may be represented by

𝑈𝑛(ℎ) − 𝜃 =
1
𝑛

𝑛
∑
𝑖=1

( E[ℎ(𝑿𝑖, 𝑿𝑛+1) ∣ 𝑿𝑖] − 𝜃) + 𝑜P(𝑛−1/2),

where 𝑿𝑛+1 is an independent copy of 𝑿1. The line of proof consists of showing that
the first part dominates the asymptotic behavior with rate

√
𝑛. Since then, many refine-

ments and improvements have been achieved; (van der Vaart, 1998, Chapter 12), (Lee,
2019; Koroljuk and Borovskich, 1994). Focusing on deviating from the independence
assumption Sen (1972) proved a limit theorem where the serial dependence allows for
⋆-mixing, Yoshihara (1976) extended this to absolutely regular (also called 𝛽-mixing)
time series. In Dehling and Wendler (2010a) this has been further extended to 𝛼-mixing
time series. Strong mixing results typically require a faster decay of mixing-rates or
bounded kernels since the important coupling lemma in Berbee (1979) fails, see Dehling
(1983), and only L1-distances may be bound in probability; (Bradley, 1983).

All together, the flexibility and asymptotic theory of U-statistics often allows for
the straightforward construction of asymptotically valid tests or confidence intervals
of point estimators. In Chapter 3 the theory of classic U-statistics is extended to the
extremes setting. Recently, a similar effort has been done in Oorschot et al. (2023) who
consider U-statistics where the kernel function has a growing order but eventually only
depends on finitely many top order statistics. As opposed to the latter setting, in the
presented article we consider the following class of estimators: Instead of 𝑋𝑖 consider
𝑀 (mb)
𝑟,𝑖 for mb ∈ {db, sb} and substitute them for the 𝑋𝑖 in (1.1) to obtain

𝑈 (mb)
𝑛,𝑟 = (

𝑛
2)

−1
∑

1≤𝑖<𝑗≤𝑛(mb)

ℎ(𝑀
(mb)
𝑟,𝑖 , 𝑀mb

𝑟,𝑗 ), (1.2)

where ℎ is a kernel of degree two, 𝑛mb denotes the sample size of the respective block
maxima sample (mb), i.e. 𝑛mb = ⌊𝑛/𝑟⌋ for mb = db and 𝑛mb = 𝑛 − 𝑟 + 1 for mb = sb.
The aim is to estimate the parameter 𝜃𝑟 = E[ℎ(𝑀

(db)
𝑟,1 , 𝑀̃db

𝑟,1)], where 𝑀̃db
𝑟,1 denotes an in-

dependent copy of 𝑀 (db)
𝑟,1 . By the DOA assumption one has for fixed 𝑖 that 𝑀 (mb)

𝑟,𝑖 ≈
GEV(𝜇𝑟 , 𝜎𝑟 , 𝛾) for large 𝑛, legitimizing the heuristic 𝜃𝑟 ≈ E[ℎ(𝑀 (mb)

𝑟,𝑖 , 𝑀 (mb)
𝑟,𝑗 )] ≈ E[𝑈 (mb)

𝑛,𝑟 ] for
well-separated indices 𝑖 << 𝑗 , since by mixing conditions one might look at 𝑀 (mb)

𝑟,𝑖 , 𝑀 (mb)
𝑟,𝑗

as being independent of each other. It is noteworthy, that the considered U-statistics
generally are not unbiased anymore. The unknown parameter of interest 𝜃𝑟 might have
an asymptotic type-equivalent analogue 𝜃 which one is also able to estimate, think of
the shape parameter 𝛾. Hence, U-statistics of block maxima allow for flexible estimation
of tail characteristics. From an abstract viewpoint this concerns U-statistics of weakly
convergent triangular arrays; an area with ongoing research, see e.g. Janson (1988),
Khashimov (1994), Tikhomirova and Chistyakov (2015), Mikhailov and Mezhennaya
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Figure 1.5: Ratio of the asymptotic variances 𝜎2db/𝜎
2
sb for the estimation of the block

maximum mean. A benchmark red dashed line was added.

(2020), Dehling et al. (2023) among others. The analysis of such U-statistics is intri-
cate: First, the observations might be highly dependent and second, the observations
are non-stationary in 𝑛 and in certain settings even in 𝑖. In the article presented we
find, that U-statistics as in (1.2) are asymptotically normal under natural mild assump-
tions, which are standard in extreme value statistics. At the cost of stricter mixing rate
assumptions we obtain these limit theorems even for 𝛼− instead of the more restric-
tive 𝛽-mixing. The results are formulated in a data adaptive way imposing a certain
kernel-transformation condition which is satisfied in many situations. Both frameworks
mb = db,mb = sb allow for comparing the asymptotic variances of the respective U-
statistics and in the article we show that Var(𝑈 (db)

𝑛,𝑟 )/Var(𝑈 (sb)
𝑛,𝑟 ) ≥ 1 while both proce-

dures admit the same bias, making a point to transition from disjoint block maxima
to sliding block maxima usage; see e.g. Figure 1.5 for the ratio of limiting variances
in the example of estimating the mean of a block maximum. These asymptotic results
have been confirmed in Monte-Carlo simulation studies in the article which show that
indeed sliding block based estimators perform better than their disjoint counterparts in
both univariate and bivariate settings.

Analyzing deviations from the identical or stationary distribution assumptions is a
highly important matter in applications as climatology; see Milly et al. (2008). Hence,
we also consider a specific non-stationary situation introduced in Bücher and Zanger
(2023) as piecewise stationary time series in which a time series is given by i.i.d. copies of
time series excerpts, that is

(𝑋𝑛,1, …𝑋𝑛,𝑛) = (𝑌
(1)
𝑛,1 , … , 𝑌 (1)𝑛,𝑟𝑛 , 𝑌

(2)
𝑛,1 , … , 𝑌 (2)𝑛,𝑟𝑛 , … ,

𝑌 (⌊𝑛/𝑟⌋)𝑛,1 , … , 𝑌 (⌊𝑛/𝑟⌋)𝑛,𝑟𝑛 , 𝑌 (⌊𝑛/𝑟⌋+1)𝑛,1 , … , 𝑌 (⌊𝑛/𝑟⌋+1)𝑛,𝑛−𝑟⋅⌊𝑛/𝑟⌋),

where (𝑌 (1)𝑛,𝑖 )𝑖 is a strictly stationary time series and (𝑌 (𝑡)𝑛,𝑖 )𝑖 are i.i.d. copies of (𝑌 (1)𝑛,𝑖 )𝑖 for all 𝑡.
This framework is motivated by considering observation periods within each year, say
summer months, concatenating the observations of each year and assuming indepen-
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dence between summer years as frequently done in climatology; see Philip et al. (2020)
to name only one example. In Chapter 3 limiting results on U-statistics of block max-
ima were shown to remain valid under this new non-stationary framework showcasing
that block maxima offer a versatile methodology of estimating extreme characteristics.

Significant effort has been devoted to deriving the asymptotic variance of sliding
block estimators in the existing literature. Typically, these variances are of complicated
form and not possible to calculate explicitly as a function of the shape 𝛾 ; see e.g. Bücher
and Zanger (2023). The joint asymptotic distribution of one dimensional sliding blocks
can be described by a bivariate Marshall Olkin type extreme value distribution 𝐺𝜉 with a
new parameter 𝜉 controlling the percentage of overlap. This in turn allows for express-
ing the rescaled asymptotic variance of linear sliding blocks estimators as

𝜎2sb = 2 ∫
1

0
Cov (ℎ(𝑍1,𝜉 ), ℎ(𝑍2,𝜉 )) d𝜉,

where (𝑍1,𝜉 , 𝑍2,𝜉 ) ∼ 𝐺𝜉 and ℎ∶ R → R is a kernel. It is noteworthy that the associated
extreme value copula of (𝑍1,𝜉 , 𝑍2,𝜉 ) is singular for 𝜉 ∈ (0, 1) leading to explicit deriva-
tions of 𝜎2sb being out of reach in relevant examples, see Example 4.4 in Bücher and
Jennessen (2020) among others. A universal approach avoiding the need for closed
form analytic expressions of 𝜎2sb might be offered by resampling methods such as the
bootstrap. Being one of the most influential statistical concepts, the bootstrap was in-
troduced in Efron (1979). In its simplest form it works as follows: Given a sample
𝒙 = (𝑥1, … , 𝑥𝑛) and a statistic 𝑇 with 𝜃̂ = 𝑇 (𝒙) to estimate 𝜃, one draws with replace-
ment 𝑛 times from {𝑥1, … , 𝑥𝑛} to obtain the bootstrap replicate 𝒙∗ = (𝑥𝑖1 , … , 𝑥𝑖𝑛) which in
turn yields 𝜃̂∗𝑛 = 𝑇 (𝒙∗). This procedure gets repeated 𝐵 ∈ N times, the latter number
being often determined by the computing power available to run the scheme, to obtain
𝐵 bootstrap replicates of the estimator 𝜃̂∗,[1]𝑛 , … , 𝜃̂∗,[𝐵]𝑛 . Under mild conditions these allow
for inferring about the error distribution 𝜃̂𝑛 − 𝜃 of the estimator by analyzing the error
distribution of 𝜃̂∗𝑛 − 𝜃̂𝑛 instead. The latter distribution has the advantage of enabling re-
sampling. Hence, estimator standard deviations and thus, confidence intervals –even
for complicated estimators –may not be out of reach after bootstrapping. The theory
about the latter is well-developed; see Efron (1982), Efron and Tibshirani (1993), Davi-
son and Hinkley (1997) and Efron and Hastie (2016), the latter for a synthesis of modern
machine learning methodology and bootstrapping.

Advantages of this method lie in both its universality but also in directly profiting
from computational power which increased by a large margin over the past decades;
(Moore, 1965; Schaller, 1997). Many advancements towards its usage for time series
have been made; see Lahiri (2003) for an introduction. It is easy to see that modifi-
cations are necessary as otherwise temporal structure gets destroyed. A remedy lies
in bootstrapping whole blocks of observations resulting in the blockwise bootstrap in
Künsch (1989) or subseries approach in Carlstein (1986); see also Politis and Romano
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(1994), Liu and Singh (1992), Hall et al. (1995), Bühlmann (1993). Block bootstrap meth-
ods require the choice of a well-balanced blocking parameter being essentially an un-
known model parameter; (Bücher and Kojadinovic, 2016). Suboptimal choices might
decrease the performance of the bootstrap significantly and several methods for opti-
mized choices have been proposed; (Hall et al., 1995; Politis and White, 2004). Hence,
a universal approach avoiding the choice of the blocking parameter is welcome and in
the context of block maxima also natural.

Bootstrapping in extremes has not been well-studied. In Ferro and Segers (2003) boot-
strapping functionals of extremal clusters was considered. Clusters of extreme observa-
tion appear in time series context and the inverse mean cluster size of a time series may
be described by the extremal index which was introduced in Leadbetter et al. (1983),
Leadbetter (1983) and originated from ideas in Loynes (1965). In Ferro and Segers (2003)
an important heuristic is that intercluster exceedance times may be considered indepen-
dent as clusters are nearly independent of each other under suitable mixing conditions.
Nevertheless, the paper does not consider statistics of extreme observations but clus-
ter characteristics. Most other bootstrap considerations only scratch the realm of ex-
treme value theory: e.g. for the mean bootstrapping in the infinite-variance case (del
Barrio and Matrán, 2000) where the traditional bootstrap fails, (Athreya, 1987); think
of 𝛼-stable distributions or not too heavy tails. One notable exception is the recently
published work de Haan and Zhou (2024) in which the authors investigate bootstrap
consistency of the PWM estimators based on the POT and block maxima methods, re-
spectively, using an asymptotic expansion of the tail quantile process which consists
of a sequence of the upper order statistics. The authors were successful in proving the
consistency for the POT regime, yet their results on the disjoint BM method did not
imply classic desired bootstrap consistency. Despite the lack of formal validity results
concerning extreme value statistical bootstrapping methods the latter are used in the
literature; (Bücher and Segers, 2018a; Zanger et al., 2024) among others.

In Chapter 4 formal consistency results on bootstrapping characteristics of disjoint
and sliding block maxima estimators are provided. A general framework which allows
for many applications is introduced and several important examples in extreme value
statistics are given. Furthermore, the results are data driven and free of oracle rates as
the standardizing sequences 𝑎𝑟 , 𝑏𝑟 . The methods work for both multivariate block max-
ima and multivariate estimators. As a demonstration, the pseudo maximum likelihood
estimator for the misspecified Fréchet model from Bücher and Segers (2018a) and the
mean of a block maximum estimators are investigated in detail. Lastly, the methods
have been applied in a case study with the result of narrower confidence bands while
attaining similar coverage compared to the classic disjoint blocks based confidence in-
tervals.

In order to establish new bootstrapping methods without the need for blocking pa-
rameters we introduce the circular block maxima (circmax) method which employs ideas
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Observations 𝑥1, … , 𝑥12; block size 𝑟 = 3

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

Divide observations into disjoint blocks of 2 ⋅ 𝑟 = 6

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12

Repeat first two (= 𝑟 − 1) observations of each block of blocks at the end

𝑥1 𝑥2 𝑥3 𝑥4 𝑥5 𝑥6 𝑥1 𝑥2 𝑥7 𝑥8 𝑥9 𝑥10 𝑥11 𝑥12 𝑥7 𝑥8

slid-maximum slid-maximum

𝑚(cb)
1 𝑚(cb)

2 𝑚(cb)
3 𝑚(cb)

4 𝑚(cb)
5 𝑚(cb)

6 𝑚(cb)
7 𝑚(cb)

8 𝑚(cb)
9 𝑚(cb)

10 𝑚(cb)
11 𝑚(cb)

12

Circular block maxima sample (cb) = (𝑚(cb)
1 , … , 𝑚(cb)

12 )

Figure 1.6: Illustration of the circular block maxima method.

from both sliding and block maxima methods as can be seen in Figure 1.6. It is pos-
sible to identify both disjoint and sliding methods as special cases of the new circmax
approach. The new method offers a computationally efficient way to bootstrap sliding
blocks characteristics. A new approach was necessary as we show that naive bootstrap
approaches based on sliding block maxima are inconsistent. Finally, a large scale simu-
lation and a case study support the theoretical findings by showing that confidence in-
tervals attain comparable coverage while being more narrow than their disjoint blocks
based bootstrap counterpart.

One legitimization for investigating the sliding blocks method even though the dis-
joint counterpart has been extensively researched lies in the fact that the asymptotic
variance of estimators based on the former is less than the respective disjoint based
variance. The latter fact might be heuristically explained by the fact that one considers
an estimator (disjoint) summing over a subset of indices of the other (sliding). This
heuristic fails, as for considering sums instead of maxima results in no advantage. The
mentioned inequality can be proven by invoking Lemma A.10 from (Zou et al., 2021)
with its proof relying on methods from time series analysis. Hence, in the case of one
dimensional observations, it does not take into account the explicit stochastic structure
of the limiting distribution of joint sliding block maxima which can be characterized
by a transformed Marshall Olkin bivariate exponential distribution (BVE). In its ba-
sic form, the BVE traditionally arises from considering two random lifetimes within a
two-component system where the system is determined by three independent sources
of shocks, Marshall and Olkin (1967). Many characteristics of the latter distribution,
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such as measures of dependence like Pearson or Kendall correlation have been studied
in the literature, see Lin et al. (2016) among others. Chapter 5 focuses on the maximal
correlation (coefficient) of the BVE which is defined as

𝑅 = 𝑅((𝑋, 𝑌 )) = sup
𝑓 ,𝑔

Cor(𝑓 (𝑋), 𝑓 (𝑌 )),

where 𝑓 , 𝑔 ∶ R → R are such that Var(𝑓 (𝑌1)), Var(𝑓 (𝑌2)) ∈ (0, ∞), (𝑋, 𝑌 ) follow a BVE
and  denotes the law of a random variable. Dating back to the work Gebelein (1941),
the maximal correlation has been extensively studied; see (Lancaster, 1957; Sarmanov,
1958; Rényi, 1959) among others. Additionally, the coefficient has applications in nu-
merous fields of statistics, such as optimal transport in regression (Breiman and Fried-
man, 1985) or Markov chains and Gibbs sampling (Liu et al., 1994). Deriving the exact
value of 𝑅 is an intricate problem but allows for sharp bounds of covariances. In Chap-
ter 5 we prove a simple form of 𝑅 for the two parameter BVE which formally answers
an open problem, see Lin et al. (2016, Section 5, problem B). An application of this is a
simple proof for 𝜎2sb ≤ 𝜎2db, utilizing the explicit form of 𝑅, which motivates the consid-
eration of the maximal correlation in this thesis. This creates a tangible link between
sliding block maxima and the BVE and verifies the superiority of sliding blocks based
estimators using the explicit limiting stochastic nature.

The rest of this thesis is structured cumulatively and organized as follows. In Chap-
ter 2 there is a list of the included articles. Chapter 3 contains the research paper on
block maxima of U-statistics. The article on bootstrapping block maxima is presented
in Chapter 4. In Chapter 5 the third article on the maximal correlation of the two pa-
rameter Marshall Olkin bivariate exponential distribution is provided. Chapter 6 gives
a brief outlook on potential future research extending the articles in this thesis. Finally,
a statement of the authors individual contributions is deferred to the appendix.
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3 Limit theorems for non-degenerate U-statistics of block
maxima for time series

In this section we present the article Bücher and Staud (2024b) which is concerned with
the asymptotic properties of U-statistics of block maxima for time series. The content
of the article is reprinted with the permission of the Electronic Journal of Statistics. Only
minor changes to improve the presentation within this thesis have been made.

Abstract

The block maxima method is a classical and widely applied statistical
method for time series extremes. It has recently been found that respec-
tive estimators whose asymptotics are driven by empirical means can be
improved by using sliding rather than disjoint block maxima. Similar re-
sults are derived for general non-degenerate U-statistics of arbitrary order,
in the multivariate time series case. Details are worked out for selected ex-
amples: the empirical variance, the probability weighted moment estimator
and Kendall’s tau statistic. The results are also extended to the case where
the underlying sample is piecewise stationary. The finite-sample properties
are illustrated by a Monte Carlo simulation study.

Keywords. Extreme Value Copula; Generalized Extreme Value Distribution; Mixing Co-
efficient; Sliding Block Maxima; Stationary Time Series.

MSC subject classifications. Primary 62G32, 62E20; Secondary 60G70.
A common target parameter in various domains of application is the distribution

of componentwise yearly or seasonal maxima calculated from some underlying mul-
tivariate time series (Katz et al., 2002; Beirlant et al., 2004). Statistical inference on the
target distribution typically involves the assumption that the block maximum distribu-
tion is an extreme value distribution. The latter is justified by probabilistic results from
extreme value theory: under broad conditions on the time series, the only possible limit
distribution of affinely standardized componentwise maxima, as the block size goes to
infinity, are extreme value distributions; see Leadbetter (1983) for the univariate case
and Hsing (1989) for multivariate extensions.

The statistical literature on estimation and testing for extreme-value distributions is
abundant, ranging from univariate estimators for the parameters of the generalized ex-
treme value distribution (Prescott and Walden, 1980; Hosking et al., 1985) to nonpara-
metric estimators for extreme value copulas (Genest and Segers, 2009) and parametric
estimators for max-stable process models (Padoan et al., 2010).

Mathematically, statistical methods are typically validated under the additional as-
sumption that the block maxima sample is serially independent. However, heuristi-
cally, both the independence assumption as well as the assumption that block maxima
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

genuinely follow an extreme-value distribution should only be satisfied asymptotically,
for the block size tending to infinity. Dombry (2015); Ferreira and de Haan (2015); Dom-
bry and Ferreira (2019) have shown that specific univariate estimators are consistent
and asymptotically normal in a sampling scheme where the block size tends to infin-
ity, while maintaining an i.i.d. assumption on the underlying time series. For specific
univariate and multivariate estimators, Bücher and Segers (2014, 2018b) also relax the
i.i.d. assumption, and allow for more general stationary time series satisfying certain
mixing conditions. It has moreover been found that estimators based on block maxima
may be made more efficient by considering sliding rather than disjoint block maxima,
both in the univariate (Robert et al., 2009; Bücher and Segers, 2018a; Bücher and Zanger,
2023) and in the multivariate case (Zou et al., 2021). A simple but incomplete heuristic
argument for this superiority consists of the fact that the sliding block maxima sample
contains some observations that are not present in the disjoint block maxima sample;
hence, it can be considered more informative. A formal argument for the superiority is
provided in Lemma A.4 in Zou et al. (2021).

In general, the field of asymptotic statistics is based on a number of fundamental the-
oretical tools like the central limit theorem, the delta-method, the empirical process or
the concept of U-statistics (van der Vaart, 1998). While the efficiency gain of the sliding
block maxima method over its disjoint blocks counterpart mentioned in the previous
paragraph has been established for classical empirical means as well as empirical (cop-
ula) processes, it has not been studied yet for the case of U-statistics. The present paper
aims at filling this gap by studying non-degenerate U-statistics of disjoint and sliding
block maxima samples. The topic is related but different to Oorschot et al. (2023), who
study U-statistics in the univariate case where the kernel of order 𝑚 is evaluated block-
wise in the largest 𝑚 order statistics of a (disjoint) block of observations.

In general, U-statistics comprise a number of important estimators like the empirical
covariance, Wilcoxon’s statistic or Kendall’s tau statistic. Prominent examples from
extremes are empirical probability weighted moments of order 𝑘 ≥ 2 in the univariate
case (which give rise to the probability weighted moment estimator for the parameters
of a Generalized Extreme Value distribution (Hosking et al., 1985)), or sample versions
of Kendall’s tau and Spearman’s rho in the bivariate case (Beirlant et al., 2004, Page 274-
275). Mathematical theory for i.i.d. random variables dates back to Hoeffding (1948);
since then, several favorable statistical properties have been demonstrated (van der
Vaart, 1998, Chapter 12). Asymptotic results on U-statistics have also been generalized
to the time series context (Sen, 1972; Yoshihara, 1976; Dehling and Wendler, 2010a);
unbiasedness then only holds asymptotically.

The main result of this paper is Theorem 3.2.5, where we establish a central limit the-
orem on the estimation error of U-statistics for multivariate disjoint and sliding block
maxima under mild assumptions on the serial dependence and the kernel function. As
in the papers mentioned before, the disjoint blocks version is found to be at most as
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3.1 U-statistics of block maxima

efficient as the sliding blocks version. In selected examples, it is in fact found to be less
efficient. The results are extended to a sampling scheme involving piecewise stationar-
ities which is used to capture certain applications from environmental extremes where
maxima are calculated based on, for example, summer days (Bücher and Zanger, 2023).
The model is interesting mathematically, because unlike the disjoint block maxima sam-
ple the sliding block maxima sample is not stationary anymore.

The remaining parts of this paper are organized as follows: the underlying model
assumptions and the definition of respective U-Statistics for disjoint and sliding block
maxima are presented in Section 3.1. The main limit results are discussed in 3.2, and
illustrated for three selected examples in Section 3.3. Extensions to piecewise stationary
time series are presented in Section 3.4. Results from a Monte Carlo simulation study
illustrate the behavior in finite-sample situations (Section 3.5). Finally, the proofs are
deferred to Sections 3.6. Additional limit results under strong mixing assumptions and
lengthy calculations of some asymptotic variances are postponed to a supplement.

3.1 U-statistics of block maxima

Recall the Generalized Extreme Value (GEV) distribution with parameters 𝜇 (location),
𝜎 (scale) and 𝛾 (shape), defined by its cumulative distribution function

𝐺(𝜇,𝜎,𝛾)(𝑥) ∶= exp [ −
{
1 + 𝛾(

𝑥 − 𝜇
𝜎 )

}− 1
𝛾

], 1 + 𝛾
𝑥 − 𝜇
𝜎

> 0.

If 𝜂 = (𝜇, 𝜎, 𝛾)′ = (0, 1, 𝛾)′, we will use the abbreviation 𝐺(0,1,𝛾) = 𝐺𝛾 . The support of 𝐺𝛾 is
denoted by 𝑆𝛾 = {𝑥 ∈ R ∶ 1 + 𝛾𝑥 > 0}.

An extension of the classical extremal types theorem to strictly stationary time series
(Leadbetter, 1983) implies that, under suitable broad conditions, affinely standardized
maxima extracted from a stationary time series converge to the GEV-distribution. This
was generalized to the multivariate case in Hsing (1989), where the marginals are nec-
essarily GEV-distributed. We make this an assumption, and additionally require the
scaling sequences to exhibit some common regularity inspired by the max-domain of
attraction condition in the i.i.d. case (de Haan and Ferreira, 2006).

Condition 3.1.1 (Multivariate Max-domain of attraction). Let (𝑿𝑡)𝑡∈Z denote a station-
ary time series in R𝑑 with continuous margins, where 𝑑 ∈ N = {1, 2, … }. There exist se-
quences (𝒂𝑟)𝑟 = (𝑎(1)𝑟 , … , 𝑎(𝑑)𝑟 ))𝑟 ⊂ (0,∞)𝑑 , (𝒃𝑟)𝑟 = (𝑏(1)𝑟 , … , 𝑏(𝑑)𝑟 )𝑟 ⊂ R𝑑 and 𝜸 = (𝛾(1), … , 𝛾(𝑑)) ∈
R, such that, for any 𝑠 > 0 and 𝑗 ∈ {1, … , 𝑑},

lim
𝑟→∞

𝑎(𝑗)⌊𝑟𝑠⌋

𝑎(𝑗)𝑟
= 𝑠𝛾

(𝑗)
lim
𝑟→∞

𝑏(𝑗)⌊𝑟𝑠⌋ − 𝑏
(𝑗)
𝑟

𝑎(𝑗)𝑟
=
𝑠𝛾(𝑗) − 1
𝛾(𝑗)

, (3.1.1)

where the second limit is interpreted as log(𝑠) if 𝛾(𝑗) = 0. Moreover, for 𝑟 → ∞,

𝒁𝑟 = (𝑍 (1)
𝑟 , … , 𝑍 (𝑑)

𝑟 ) ⟶𝑑 𝒁 ∼ 𝐺 (3.1.2)
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

where𝐺 denotes a 𝑑-variate extreme-value distribution with marginal c.d.f.s𝐺𝛾(1) , … , 𝐺𝛾(𝑑)
and where

𝑍 (𝑗)
𝑟 =

max(𝑋 (𝑗)
1 , … , 𝑋 (𝑗)

𝑟 ) − 𝑏(𝑗)𝑟
𝑎(𝑗)𝑟

, 𝑗 ∈ {1, … , 𝑑}.

In the case 𝑑 = 1, we omit all upper indexes; e.g., we write 𝛾 = 𝛾(1). In the case 𝑑 ≥ 2,
let 𝐶 denote the unique extreme value copula associated with 𝒁 . As is well-known, 𝐶
can be written as

𝐶(𝒖) = exp (−𝐿(− log 𝑢(1), … , − log 𝑢(𝑑))) (3.1.3)

for some stable dependence function 𝐿∶ [0,∞]𝑑 → [0,∞], which satisfies

(L1) 𝐿 is homogeneous: 𝐿(𝑠𝒙) = 𝑠𝐿(𝒙) for all 𝑠 > 0 and all 𝒙 ∈ [0,∞]𝑑 ;
(L2) 𝐿(𝒆𝑗 ) = 1 for 𝑗 = 1, … , 𝑑, where 𝒆𝑗 denotes the 𝑗-th unit vector in R𝑑 ;
(L3) max (𝑥(1), … , 𝑥(𝑑)) ≤ 𝐿(𝒙) ≤ 𝑥(1) +…+ 𝑥(𝑑) for all 𝒙 ∈ [0,∞]𝑑 ;
(L4) 𝐿 is convex;

see, e.g., Gudendorf and Segers (2010); Pickands (1981).
Note that (3.1.1) and (3.1.2) may for instance be deduced from Leadbetter’s 𝐷(𝑢𝑛)

condition, a domain-of-attraction condition on the associated i.i.d. sequence with sta-
tionary distribution equal to that of 𝑿0 and a weak requirement on the convergence of
the c.d.f. of 𝒁𝑟 , see Theorem 10.22 in Beirlant et al. (2004).

From now on, we assume to observe 𝑿1, … , 𝑿𝑛, an excerpt from a strictly stationary
𝑑-dimensional time series (𝑿𝑡)𝑡 satisfying Condition 3.1.1 (some generalizations will be
discussed in Section 3.4). For block size parameter 𝑟 ≪ 𝑛, define componentwise block
maxima of size 𝑟 by

𝑴𝑟 ,𝑖 ∶= (𝑀
(1)
𝑟,𝑖 , … ,𝑀 (𝑑)

𝑟,𝑖 ), 𝑀 (𝑗)
𝑟 ,𝑖 ∶= max

{
𝑋 (𝑗)
𝑖 , … , 𝑋 (𝑗)

𝑖+𝑟−1

}
,

where 𝑖 ∈ {1, … , 𝑛 − 𝑟 + 1} denotes the first observation within each block.
The traditional block maxima method is based on applying statistical methods to the

sample of disjoint block maxima. The latter is given by (db)
𝑛,𝑟 = (𝑴𝑟 ,𝑖∶ 𝑖 ∈ 𝐼 db𝑛 ), where

𝐼 db𝑛 ∶= {(𝑖−1)𝑟 +1∶ 1 ≤ 𝑖 ≤ 𝑚} with𝑚 = 𝑚𝑛 ∶= ⌊𝑛/𝑟⌋. Note that𝑚 is the number of disjoint
blocks of size 𝑟 that fit into the sampling period. Under Condition 3.1.1, the sample of
disjoint block maxima is stationary and approximately follows the multivariate extreme
value distribution 𝐺.

Instead of partitioning the observation period into disjoints blocks, one may alterna-
tively slide the blocks through the observation period, thereby taking successive max-
ima of only one to the right instead of 𝑟 . The resulting sliding block maxima sample is
given by (sb)

𝑛,𝑟 = (𝑴𝑟 ,𝑖∶ 𝑖 ∈ 𝐼 sb𝑛 ), where 𝐼 sb𝑛 ∶= {1, … , 𝑛 − 𝑟 + 1}. Under Condition 3.1.1, the
sliding block maxima sample is stationary as well, with approximate c.d.f. 𝐺. Hence,
statistical methods that are based on estimating unknown expectations by empirical
means are meaningful.
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3.2 Limit theorems for U-statistics of block maxima

The case of classical empirical means has been treated in varying generality in Bücher
and Segers (2018a); Zou et al. (2021); Bücher and Zanger (2023). It was found that
estimators based on sliding block maxima are typically more efficient than their disjoint
block maxima counterparts, despite the fact that the sample (sb)

𝑛,𝑟 is heavily dependent
over time, even if (𝑿𝑡)𝑡 is an i.i.d. sequence. In this paper we generalize these results to
U-statistics of order 𝑝 ∈ N, with 𝑝 = 1 corresponding to classical empirical means.

More precisely, let ℎ∶ (R𝑑)𝑝 → R be a known symmetric measurable function of 𝑝 𝑑-
dimensional input variables, subsequently referred to as a kernel of order 𝑝. The main
objects of interest in this paper are the associated U-statistic of order 𝑝 given by, for
mb ∈ {db, sb},

𝑈mb
𝑛,𝑟 ∶= 𝑈mb

𝑛,𝑟 (ℎ) ∶= (
𝑛mb

𝑝 )

−1
∑

(𝑖1,…,𝑖𝑝)∈𝐽mb
𝑛

ℎ(𝑴𝑟 ,𝑖1 , … ,𝑴𝑟 ,𝑖𝑝) , (3.1.4)

where 𝑛mb = |𝐼mb
𝑛 | denotes the length of the block maxima sample (i.e., 𝑛db = 𝑚 if mb = db

and 𝑛sb = 𝑛 − 𝑟 + 1 if mb = sb) and where

𝐽mb
𝑛 ∶= 𝐽mb

𝑛 (𝑝) ∶= {(𝑖1, … , 𝑖𝑝) ∈ (𝐼mb
𝑛 )𝑝 ∶ 𝑖1 < ⋯ < 𝑖𝑝}.

A standard heuristic argument suggests that, for the majority of summands in (3.1.4),
the underlying block maxima can be considered as asymptotically independent. As a
consequence, 𝑈mb

𝑛 should be considered as an estimator for

𝜃𝑟 = 𝜃𝑟(ℎ) ∶= ∫ ⋯∫ ℎ(𝒙1, … , 𝒙𝑝) dP𝑴𝑟 ,1(𝑥1) … dP𝑴𝑟 ,1(𝑥𝑝)

= E[ℎ(𝑴̃(1)
𝑟,1 , … , 𝑴̃(𝑝)

𝑟,1 )], (3.1.5)

where 𝑴̃(1)
𝑟,1 , … , 𝑴̃(𝑝)

𝑟,1 are i.i.d. copies of 𝑴𝑟 ,1. We are interested in obtaining asymptotic
results for the estimation error

𝑈mb
𝑛,𝑟 (ℎ) − 𝜃𝑟(ℎ)

in an asymptotic framework where 𝑟 = 𝑟𝑛 → ∞ such that 𝑟 = 𝑜(𝑛) for 𝑛 → ∞.

3.2 Limit theorems for U-statistics of block maxima

We start by introducing further conditions and notations. First, throughout the proofs
we will use traditional blocking techniques relying on mixing coefficients. The latter are
well-known to control the serial dependence of the underlying time series. A similar
condition has been imposed in Bücher and Segers (2014), among others.

Condition 3.2.1 (Block size and serial dependence). For the block size sequence (𝑟𝑛)𝑛 it
holds that, as 𝑛 → ∞,

(a) 𝑟𝑛 → ∞ and 𝑟𝑛 = 𝑜(𝑛).
(b) There exists a sequence (𝓁𝑛)𝑛 ⊂ N such that 𝓁𝑛 → ∞, 𝓁𝑛 = 𝑜(𝑟𝑛) and 𝑟𝑛

𝓁𝑛𝛼(𝓁𝑛) = 𝑜(1)
and 𝑛

𝑟𝑛𝛼(𝓁𝑛) = 𝑜(1).
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

(c) ( 𝑛
𝑟𝑛 )

1+𝜔𝛽(𝑟𝑛) = 𝑜(1) for some 𝜔 > 0.

Here, 𝛼 and 𝛽 denote the alpha- and beta-mixing coefficients, see Bradley (2005) for
exact definitions and basic properties. Subsequently, we often write 𝑟 = 𝑟𝑛 and 𝓁 = 𝓁𝑛.

The expectation and higher order moments of ℎ(𝑴𝑟 ,𝑖1 , … ,𝑴𝑟 ,𝑖𝑝) in (3.1.4) will be con-
trolled by uniform integrablity and by relying on the convergence of rescaled block
maxima from Condition 3.1.1. For that purpose, we need the kernel function ℎ to be-
have well under location-scale transformations; see also Segers (2001), Chapter 5, and
Oorschot et al. (2023) for a similar, slightly more restrictive assumption.

Condition 3.2.2 (Location-scale property of the kernel function). There exist functions
𝑓 ∶ (R𝑑)𝑝 → (0,∞), 𝓁∶ (R𝑑)𝑝 → R such that, for all 𝒙1, … , 𝒙𝑝 , 𝒃 ∈ R𝑑 and 𝒂 ∈ (0,∞)𝑑 ,

ℎ(
𝒙1 − 𝒃
𝒂

,… ,
𝒙𝑝 − 𝒃
𝒂 ) =

ℎ(𝒙1, … , 𝒙𝑝)
𝑓 (𝒂, 𝒃)

− 𝓁(𝒂, 𝒃), (3.2.1)

where 𝒙/𝒚 ∶= (𝑥(1)/𝑦(1), … , 𝑥(𝑑)/𝑦(𝑑)) for 𝒙 ∈ R𝑑 , 𝒚 ∈ (0, ∞)𝑑 .

Example 3.2.3. Condition 3.2.2 is met for the following kernel functions. Note that the
kernels in (5) to (7) may be used to construct tests for stochastic independence; see,
for instance, Leung and Drton (2018). In the current case, this corresponds to testing
asymptotic independence of the coordinates of 𝑿1.

(1) The mean kernel: ℎ(𝑥) = 𝑥 with 𝑑 = 1, 𝑝 = 1, 𝑓 (𝑎, 𝑏) = 𝑎, 𝓁(𝑎, 𝑏) = 𝑏/𝑎.
(2) The variance kernel: ℎ(𝑥, 𝑦) = (𝑥 − 𝑦)2/2 with 𝑑 = 1, 𝑝 = 2, 𝑓 (𝑎, 𝑏) = 𝑎2, 𝓁 ≡ 0.
(3) Gini’s mean difference kernel: ℎ(𝑥, 𝑦) = |𝑥 − 𝑦|/2 with 𝑑 = 1, 𝑝 = 2, 𝑓 (𝑎, 𝑏) = 𝑎, 𝓁 ≡ 0.
(4) The modified probability weighted moment kernel of degree 𝑘 ∈ N (see also Sec-

tion 3.3.2): ℎ𝑘(𝑥1, … , 𝑥𝑘) = max{𝑥1, … , 𝑥𝑘}/𝑘 with 𝑑 = 1, 𝑝 = 𝑘, 𝑓 (𝑎, 𝑏) = 𝑎, 𝑙(𝑎, 𝑏) = 1
𝑘 ⋅

𝑏
𝑎 .

(5) Kendall’s 𝜏 kernel: ℎ(𝒙, 𝒚) = 𝟏
{
(𝑥(1) − 𝑦(1))(𝑥(2) − 𝑦(2)) > 0

}
with 𝑑 = 2, 𝑝 = 2, 𝑓 ≡

1, 𝓁 ≡ 0.
(6) Spearman’s 𝜌 kernel: ℎ(𝒙1, 𝒙2, 𝒙3) = 2−1∑𝜋∈S3 sgn(𝑥

(1)
𝜋1 − 𝑥(1)𝜋2 ) sgn(𝑥

(2)
𝜋1 − 𝑥(2)𝜋3 ) with 𝑑 =

2, 𝑝 = 3, 𝑓 ≡ 1, 𝓁 ≡ 0 and where S𝑛 denotes the symmetric group of order 𝑛.
(7) Hoeffding’s 𝐷 kernel and Bergsma and Dassio’s 𝑡∗ kernel: we refer to Leung and

Drton (2018) for the kernel definition, which satisfy 𝑑 = 2, 𝑓 ≡ 1, 𝓁 ≡ 0 and 𝑝 = 4 and
𝑝 = 5, respectively.

From now on, for the ease of notation, we only consider the case 𝑝 = 2 (see also
Dehling and Wendler (2010a), among others). For 𝑖 ∈ {1, … , 𝑛 − 𝑟 + 1}, let

𝒁𝑟 ,𝑖 ∶= (𝑍
(1)
𝑟,𝑖 , … , 𝑍 (𝑑)

𝑟,𝑖 ), 𝑍 (𝑗)
𝑟 ,𝑖 ∶= (𝑀 (𝑗)

𝑟 ,𝑖 − 𝑏
(𝑗)
𝑟 )/𝑎(𝑗)𝑟 .

with 𝒂𝑟 and 𝒃𝑟 from Condition 3.1.1. Note that (𝒁𝑟 ,𝑖)𝑖 is stationary with 𝒁𝑟 ,1 ⇝ 𝐺 as
𝑛 → ∞. Further, under Condition 3.2.2 one has

ℎ (𝑴𝑟 ,𝑖, 𝑴𝑟 ,𝑗) = 𝑓 (𝒂𝑟 , 𝒃𝑟)
{
ℎ (𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗) + 𝓁(𝒂𝑟 , 𝒃𝑟)

}
, (3.2.2)
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3.2 Limit theorems for U-statistics of block maxima

which will ultimately allow to deduce asymptotic results on 𝑈mb
𝑛,𝑟 defined in (3.1.4) from

respective results on

𝑈mb
𝑛,𝑟,𝑍 ∶= 𝑈mb

𝑛,𝑟,𝑍(ℎ) ∶= (
𝑛mb

2 )

−1
∑

(𝑖,𝑗)∈𝐽mb
𝑛

ℎ(𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗) . (3.2.3)

Heuristically, the expectation of 𝑈mb
𝑛,𝑍 is close to

𝜗𝑟 = 𝜗𝑟(ℎ) = ∫ ∫ ℎ(𝒙, 𝒚) dP𝒁𝑟 ,1(𝒙) dP𝒁𝑟 ,1(𝒚) = E[ℎ(𝒁𝑟 ,1, 𝒁̃𝑟 ,1)] (3.2.4)

with 𝒁̃𝑟 ,1 an independent copy of 𝒁𝑟 ,1. The sequence 𝜗𝑟 in turn converges to

𝜗 ∶= E[ℎ(𝒁, 𝒁̃)], (3.2.5)

under suitable integrability assumptions; here 𝒁, 𝒁̃ ∼ 𝐺 are independent (see Lemma 3.7.1
below). The necessary integrability condition, which will also ensure convergence of
higher order moments, is as follows.

Condition 3.2.4 (Asymptotic integrability). There exists a 𝜈 > 2/𝜔 with 𝜔 from Condi-
tion 3.2.1 such that:

(a) lim sup𝑟→∞ ∫ ∫ |ℎ(𝒙, 𝒚)|2+𝜈 dP𝒁𝑟 ,1(𝒙) dP𝒁𝑟 ,1(𝒚) < ∞,
(b) lim sup𝑟→∞ sup𝑠∈N ∫ |ℎ(𝒙, 𝒚)|2+𝜈 dP(𝒁𝑟 ,1,𝒁𝑟 ,1+𝑠)(𝒙, 𝒚) < ∞.

Note that the two moment assumptions may be understood as an asymptotic formu-
lation of uniform moments as used in Dehling and Wendler (2010b). In many situa-
tions, the conditions are easily satisfied, see, e.g., Section 3.3. Finally, for kernels of
higher order than 𝑝 = 2, more complicated versions of this condition will be needed,
see Yoshihara (1976).

Additional notation is needed to formulate the asymptotic limit results for 𝑈mb
𝑛,𝑟 . Re-

call 𝐺 from Condition 3.1.1. Let 𝐿 denote the stable tail dependence function of 𝐺 if
𝑑 ≥ 2, and the identity on [0, ∞] if 𝑑 = 1. For 𝒖, 𝒗 ∈ [0, 1]𝑑 and 𝜉 ≥ 0, let

𝐶𝜉 (𝒖, 𝒗) = exp [ − 𝐿𝜉( − log 𝑢(1), … , − log 𝑢(𝑑), − log 𝑣(1), … , − log 𝑣(𝑑))], (3.2.6)

where, for 𝒙, 𝒚 ∈ [0,∞]𝑑 ,

𝐿𝜉 (𝒙, 𝒚) ∶= (𝜉 ∧ 1) ⋅
{
𝐿(𝑥(1), … , 𝑥(𝑑)) + 𝐿 (𝑦(1), … , 𝑦(𝑑))

}

+ (1 − (𝜉 ∧ 1)) ⋅ 𝐿 (𝑥(1) ∨ 𝑦(1), … , 𝑥(𝑑) ∨ 𝑦(𝑑)) . (3.2.7)

As shown in Lemma 3.7.6 below, 𝐶𝜉 defines a 2𝑑-variate extreme-value copula with sta-
ble tail dependence function 𝐿𝜉 . Let 𝐺𝜉 denote the 2𝑑-variate extreme value distribution
with copula 𝐶𝜉 and margins 𝐺𝛾(1) , … , 𝐺𝛾(𝑑) , 𝐺𝛾(1) , … , 𝐺𝛾(𝑑) , i.e.,

𝐺𝜉 (𝒙, 𝒚) = 𝐶𝜉
{
𝐺𝛾(1)(𝑥

(1)), … , 𝐺𝛾(𝑑)(𝑥
(𝑑)), 𝐺𝛾(1)(𝑦

(1)), … , 𝐺𝛾(𝑑)(𝑦
(𝑑))

}
(3.2.8)
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

for 𝒙, 𝒚 ∈ R𝑑 . Note that 𝐺𝜉 (𝒙, 𝒚) = 𝐺(𝒙)𝐺(𝒚) for 𝜉 > 1. Further, 𝐺𝜉 is the multivariate
analogue of 𝐺𝛼0,𝜉 in Formula (5.1) in Bücher and Segers (2018a) and, in the case 𝑑 = 1,
also appeared in Formula (13) in Bücher and Zanger (2023).

Finally, for (𝒁1,𝜉 , 𝒁2,𝜉 ) ∼ 𝐺𝜉 , let

𝜎2db ∶= 4Var(ℎ1(𝒁)), 𝜎2sb ∶= 8 ∫
1

0
Cov (ℎ1(𝒁1,𝜉 ), ℎ1(𝒁2,𝜉 )) d𝜉. (3.2.9)

where,

ℎ1∶ R𝑑 → R, ℎ1(𝒛) ∶= E[ℎ(𝒛, 𝒁)] − 𝜗 (3.2.10)

with 𝒁 ∼ 𝐺 and 𝜗 from (3.2.5). The following result is the main result of this paper.
Here and throughout, 𝜆𝜆2𝑑 denotes the Lebesgue measure on R2𝑑 .

Theorem 3.2.5. Suppose Conditions 3.1.1, 3.2.1, 3.2.2 and 3.2.4 are met. Furthermore let ℎ be
𝜆𝜆2𝑑-a.e. continuous and bounded on compact sets. Then, for mb ∈ {db, sb},

√
𝑚

𝑓 (𝒂𝑟 , 𝒃𝑟)
⋅ (𝑈mb

𝑛,𝑟 − 𝜃𝑟)⇝ (0, 𝜎2mb),

with 𝜃𝑟 from (3.1.5) and 𝜎2mb from (3.2.9). Moreover, 𝜎2sb ≤ 𝜎2db.

Note that, under Condition 3.2.2, 𝜃𝑟 = 𝑓 (𝒂𝑟 , 𝒃𝑟){𝜗𝑟 + 𝓁(𝒂𝑟 , 𝒃𝑟)} with 𝜗𝑟 from (3.2.4). In
certain situations (in particular when 𝓁 = 0 and 𝑓 ≡ const; see, e.g., Kendall’s tau), one
may be willing to regard 𝑈mb

𝑛,𝑟 as an estimator for the asymptotic analogue

𝜗̃𝑟 = 𝑓 (𝒂𝑟 , 𝒃𝑟){𝜗 + 𝓁(𝒂𝑟 , 𝒃𝑟)}. (3.2.11)

For instance, in case of the variance kernel (see also Section 3.3.1), 𝜗̃𝑟 is the variance of
the GEV(𝑏𝑟 , 𝑎𝑟 , 𝛾)-distribution, which is exactly the GEV-distribution approximating the
distribution of 𝑀𝑟 ,1, see Assumption 3.1.1. Under an additional bias condition, we may
deduce the following result on the estimation error.

Corollary 3.2.6. Additionally to the assumptions made in Theorem 3.2.5, suppose that the limit
𝐵 = lim𝑛→∞ 𝐵𝑛 exists, where

𝐵𝑛 ∶=
√
𝑚(𝜗𝑟 − 𝜗). (3.2.12)

Then, for mb ∈ {db, sb}, √
𝑚

𝑓 (𝒂𝑟 , 𝒃𝑟)
⋅ (𝑈mb

𝑛,𝑟 − 𝜗̃𝑟)⇝ (𝐵, 𝜎2mb),

with 𝜎2mb from (3.2.9) and 𝜗̃𝑟 from (3.2.11).

Remark 3.2.7 (Generalizations). Using the Cramér-Wold Theorem it is possible to gen-
eralize the limit theorems to the case of joint convergence involving a finite number
of kernel functions. Moreover, as mentioned before and at the cost of a more compli-
cated notation, one might extend the results to higher kernel degrees 𝑝 ∈ N. Joint weak
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3.3 Examples

convergence then even holds for kernels of different degrees. These generalizations
allow, for example, to handle the joint convergence of probability weighted moments
estimators of different order, which would be needed to deduce the asymptotics of the
PWM-estimator for the parameters of the GEV-distribution. Further generalizations
concerning different model assumptions are worked out in Section 3.4 and Section 3.8.2
in the supplement.

Remark 3.2.8 (A bias-corrected version of the sliding blocks estimator). In view of Lemma
3.7.6 below, the block maxima𝑴𝑟 ,𝑖 and𝑴𝑟 ,𝑗 are asymptotically independent for |𝑖 − 𝑗| ≥ 𝑟
and asymptotically dependent otherwise. As a consequence, the summands ℎ(𝑴𝑟 ,𝑖, 𝑴𝑟 ,𝑗 )
with |𝑖 − 𝑗| < 𝑟 induce a dependency bias, which suggests to replace 𝑈 sb

𝑛,𝑟 by

𝑈̃ sb
𝑛,𝑟 ∶= (

𝑛̃sb
2 )

−1
∑

(𝑖,𝑗)∈𝐽 sb𝑛

ℎ(𝑴𝑟 ,𝑖, 𝑴𝑟 ,𝑗 ),

where 𝐽 sb𝑛 = {(𝑖, 𝑗) ∈ (𝐼 sb𝑛 )2∶ 𝑗 − 𝑖 ≥ 𝑟}; see also Bücher and Zanger (2023), Remark 3.1.
Note that |𝐽 sb𝑛 | = (𝑛sb−𝑟+12 ) = (𝑛−2𝑟+22 ) and |𝐽 sb𝑛 ⧵ 𝐽 sb𝑛 | = 𝑂(𝑛𝑟), which can be used to show
that

√
𝑚

𝑓 (𝑎,𝑏) (𝑈̃
sb
𝑛,𝑟 − 𝑈 sb

𝑛,𝑟) = 𝑂P((1 + 𝓁(𝒂𝑟 , 𝒃𝑟))𝑚−1/2) with 𝓁 from Condition 3.2.2. Hence, the
two estimators are typically asymptotically equivalent. However, in finite-sample sit-
uations, the bias-reduction may actually be superimposed by an increase in estimation
variance (see Section 3.8.4 in the supplement), whence we cannot recommend its usage
in general (this is akin to the recommendation in Bücher and Zanger (2023), Section
E.3).

3.3 Examples

Details are worked out for specific kernel functions of interest.

3.3.1 Variance estimation

The variance is one of the most fundamental parameters to describe a distribution of
interest, which, in our case, is 𝜎2𝑟 ∶= Var(𝑀𝑟 ,1), where (𝑋𝑡)𝑡 is a univariate time series.
The respective empirical variance, based on either disjoint or sliding block maxima, is
given by

𝜎̂2𝑛,𝑟 ,mb =
1

𝑛mb − 1
∑
𝑖∈𝐼mb

𝑛

(𝑀𝑟 ,𝑖 −𝑀
mb
𝑟 )

2, mb ∈ {db, sb},

where 𝑀mb
𝑟 ∶= 𝑛−1mb∑𝑖∈𝐼mb

𝑛
𝑀𝑟 ,𝑖. As is well-known, the empirical variance can be written

as a U-statistic of order 𝑝 = 2, that is,

𝜎̂2𝑛,𝑟 ,mb = 𝑈mb
𝑛,𝑟 (ℎVar), ℎVar(𝑥, 𝑦) = (𝑥 − 𝑦)2/2.

The following result is a direct consequence of Theorem 3.2.5.
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Figure 3.1: Graph of 𝛾 ↦ 𝜎2db/𝜎
2
sb with 𝜎2mb as in (3.8.7) and (3.8.8).

Corollary 3.3.1. Let 𝑑 = 1 and suppose that Conditions 3.1.1 and 3.2.1 are met with 𝛾 < 1/4.
Moreover, assume that there exists a constant 𝜈 > 2/𝜔 such that lim sup𝑟 E|𝑍𝑟 ,1|4+𝜈 < ∞. Then

√
𝑚
𝑎2𝑟 (𝜎̂

2
𝑛,𝑟 ,mb − 𝜎

2
𝑟 )⇝ (0, 𝜎2mb),

where 𝜎2db and 𝜎2sb only depend on the tail index 𝛾 . Explicit formulas are provided in (3.8.7) and
(3.8.8) in the supplement, respectively. Moreover, 𝜎2sb < 𝜎2db.

The assumption 𝛾 < 1/4 is natural, as asymptotic normality results on empirical vari-
ances require finite fourth moments; in the case of the GEV-distribution, this exactly
corresponds to 𝛾 < 1/4. Figure 3.1 shows the ratio of the asymptotic variances, 𝜎2db/𝜎

2
sb

as a function of 𝛾 . We observe that the estimator based on sliding blocks has a sig-
nificantly smaller variance for negative 𝛾 , say 𝛾 < −.25, while hardly any difference is
visible for positive 𝛾 .

The previous results may be made more explicit when imposing a specific time se-
ries model. We exemplary work out details for a marginal transformed version of
the ARMAX-model. The model is defined as follows: for an i.i.d. sequence (𝑊𝑡)𝑡∈Z

of Fréchet(1) distributed random variables and 𝛼 ∈ (0, 1], consider the ARMAX(1) re-
cursion defined as

𝑌𝑡 = max {𝛼𝑌𝑡−1, (1 − 𝛼)𝑊𝑡} , 𝑡 ∈ Z. (3.3.1)

The recursion has the stationary solution 𝑌𝑡 ∶= max𝑗≥0(1−𝛼)𝛼𝑗𝑊𝑡−𝑗 , which has Fréchet(1)
distributed marginals and extremal index 𝜃 = 1 − 𝛼, see Example 10.5 in Beirlant et al.
(2004). Define 𝑋𝑡 as the transformed random variables 𝑋𝑡 ∶= 𝐹←𝛾 (𝐹𝑊 (𝑌𝑡)), where 𝐹𝑊 is
the c.d.f. of a Fréchet(1) distribution, 𝐹𝛾 is the c.d.f. of the Pareto family defined as

𝐹𝛾(𝑥) ∶=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

(1 − (1 + 𝛾𝑥)−1/𝛾) 𝟏 {𝑥 ≥ 0} , 𝛾 > 0

(1 − (1 + 𝛾𝑥)−1/𝛾) 𝟏 {0 ≤ 𝑥 ≤ −1/𝛾} , 𝛾 < 0

(1 − exp(−𝑥)) 𝟏 {𝑥 ≥ 0} , 𝛾 = 0

, (3.3.2)
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and where 𝐹← is the left continuous generalized inverse of 𝐹 . By Berghaus and Bücher
(2018) and Bradley (2005) the untransformed time series (𝑌𝑡)𝑡 is exponentially 𝛽-mixing,
which implies the same for (𝑋𝑡)𝑡 . This results in a large spectrum of choices for 𝑟𝑛 and
𝓁𝑛 satisfying Condition 3.2.1, which can hence be regarded as non-restrictive. We will
prove in Section 3.6.2 that, if 𝛾 < 1/4 and if 𝑟 = 𝑜(𝑛), 𝑛 = 𝑜(𝑟3), all assumptions from
Corollary 3.3.1 are met, with 𝑎𝑟 = (𝑟(1 − 𝛼))𝛾 and 𝑏𝑟 = {(𝑟(1 − 𝛼))𝛾 − 1}/𝛾 . Hence,

√
𝑚

(𝑟(1 − 𝛼))2𝛾
(𝜎̂2𝑛,𝑟 ,mb − 𝜎

2
𝑟 )⇝ (0, 𝜎2mb) (3.3.3)

as asserted. Moreover, one may show that the bias condition is met with 𝐵 = 0, whence
𝜎2𝑟 may be replaced by (𝑟(1 − 𝛼))2𝛾𝜏2(𝛾), where 𝜏2(𝛾) ∶= 1

𝛾 {Γ(1 − 2𝛾) − Γ(1 − 𝛾)2}𝟏{𝛾 ∈
(−∞, 1/2) ⧵ {0}} + (𝜋2/6)𝟏{𝛾 = 0} is the variance of the GEV(𝛾) distribution, with Γ(𝑥) ∶=
∫∞0 𝑡𝑥−1𝑒−𝑡 d𝑡, 𝑥 > 0, the Gamma function.

3.3.2 The probability weighted moment estimator

Let 𝑀 ∼ 𝐺𝜂 be a GEV-distributed random variable with parameter 𝜂 = (𝜇, 𝜎, 𝛾)′ ∈ R ×
(0,∞) × (−∞, 1). For 𝑘 ∈ N0, the 𝑘th probability weighted moment (PWM) of 𝑀 is given
by

𝛽𝜂,𝑘 ∶= E[𝑀𝐺𝑘𝜂(𝑀)]. (3.3.4)

It is well-known that 𝜂 is a one-to-one function of the first three probability weighted
moments (Hosking et al., 1985). Replacing the moments in (3.3.4) by suitable estimators
and plugging those into the one-to-one function results in (the) PWM estimator for 𝜂.
One version, as proposed in Landwehr et al. (1979), is given by

𝛽0 ∶=
1
𝑛

𝑛
∑
𝑖=1

𝑀𝑖, 𝛽𝑘 ∶=
1
𝑛

𝑛
∑
𝑖=1

(𝑖 − 1) ⋅ … ⋅ (𝑖 − 𝑘)
(𝑛 − 1) ⋅ … ⋅ (𝑛 − 𝑘)

𝑀(𝑖), 𝑘 ≥ 1 (3.3.5)

where  = (𝑀1, … ,𝑀𝑛) is a sample of random variables distributed as 𝑀 and 𝑀(1) ≤
… ≤ 𝑀(𝑛) is the ordered sample. If  is an i.i.d. sample, then there are no ties with
probability 1, whence 𝛽𝑘 = 𝛽𝑘, where, for 𝑘 ∈ N,

𝛽𝑘−1 = (
𝑛
𝑘)

−1
∑

1≤𝑖1<…<𝑖𝑘≤𝑛
ℎpwm,𝑘(𝑀𝑖1 , … ,𝑀𝑖𝑘 ) (3.3.6)

with the permutation invariant kernel function

ℎpwm,𝑘(𝑥1, … , 𝑥𝑘) ∶=
1
𝑘

𝑘
∑
𝑗=1

𝟏
{

max
1≤𝑖≤𝑘,𝑖≠𝑗

𝑥𝑖 ≤ 𝑥𝑗
}
𝑥𝑗 (3.3.7)

Clearly, 𝛽𝑘−1 is a U-statistic of order 𝑘 that is unbiased for E[𝛽𝑘−1] = 𝛽𝜂,𝑘−1 in case the
sample is i.i.d.

In this section, we apply Theorem 3.2.5 to derive limit results for the estimator

𝛽mb
𝑘−1 = 𝑈mb

𝑛,𝑟 (ℎpwm,𝑘)
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

with mb ∈ {db, sb}. For simplicity, we restrict attention to the case 𝑘 = 2, which yields a
U-statistic of order 2. Since the function ℎpwm,2 does not satisfy Condition 3.2.2, we will
need the modified kernel function ℎ̃pwm,2(𝑥, 𝑦) ∶= max(𝑥, 𝑦)/2 from Example 3.2.3.

Proposition 3.3.2. Let 𝑑 = 1 and suppose that (𝑋𝑡)𝑡∈Z satisfies Condition 3.1.1, does not
contain ties with probability one, and that Condition 3.2.1 is met. If there exists 𝜈 > 2/𝜔 such
that lim sup𝑟→∞ E|𝑍𝑟 ,1|2+𝜈 < ∞, then, for mb ∈ {db, sb},

√
𝑚
𝑎𝑟

{
𝑈mb
𝑛,𝑟 (ℎpwm,2) − 𝑈

mb
𝑛,𝑟 (ℎ̃pwm,2)

}
𝐿2−−→ 0.

If, moreover, the limit 𝐵 ∶= lim𝑛 𝐵𝑛 exists, where 𝐵𝑛 =
√
𝑚E[𝐹𝑟(𝑍𝑟 ,1)𝑍𝑟 ,1 − 𝐺𝛾(𝑍)𝑍] with 𝐹𝑟 the

c.d.f. of 𝑍𝑟 ,1 and 𝑍 ∼ 𝐺𝛾 , then

√
𝑚
(
𝛽mb
1 − 𝛽(𝑏𝑟 ,𝑎𝑟 ,𝛾),1

𝑎𝑟 )
⇝ (𝐵, 𝜎2mb),

with 0 < 𝜎2sb < 𝜎2db.

Note that similar asymptotics have also been worked out in Bücher and Zanger (2023)
and Ferreira and de Haan (2015). In Bücher and Zanger (2023), who also provide ex-
plicit formulas for the asymptotic variances, the derivation was based on explicit ex-
pansions of the kernel function involving empirical cumulative distribution functions.
Comparing our result with their Theorem 3.5, we observe that our result is slightly
more restrictive, since we impose 𝛽-mixing rather than 𝛼-mixing. An extension to 𝛼-
mixing is given in Section 3.8.2 in the supplement. Ferreira and de Haan (2015) only
consider the i.i.d. case and the disjoints blocks estimator. Under this setting and using
an approach based on the quantile process of the block maxima sample, they were able
to provide explicit expressions for the asymptotic bias under a mild and natural second
order condition; see their Theorem 2.2. They also provide an alternative representation
for the asymptotic normal distribution.

3.3.3 Estimation of Kendall’s tau

Kendall’s tau statistic is a well-known nonparametric distribution-free measure of rank
correlation that quantifies the degree of association between two variables (Kendall,
1938). The population version 𝜏 = 𝜏(𝑿) for a bivariate vector 𝑿 = (𝑋 (1), 𝑋 (2)) is de-
fined as follows: for i.i.d. copies 𝑿1, 𝑿2 of 𝑿 , we have 𝜏 ∶= 𝜋𝑐 − 𝜋𝑑 = 2𝜋𝑐 − 1, where
𝜋𝑐 ∶= P((𝑋 (1)

1 − 𝑋 (1)
2 )(𝑋 (2)

1 − 𝑋 (2)
2 ) > 0) and 𝜋𝑑 ∶= P((𝑋 (1)

1 − 𝑋 (1)
2 )(𝑋 (2)

1 − 𝑋 (2)
2 ) < 0) de-

note the probabilities of concordance and discordance of 𝑿1, 𝑿2, respectively. Applied
to bivariate extreme value distributions, Kendall’s tau provides a useful summary of
extremal dependence; see (Beirlant et al., 2004, pp. 274-275) and the references therein.

For a bivariate sample (𝑿𝟏, … , 𝑿𝑛) Kendall’s 𝜏-statistic can be written as
𝜏̂𝑛 = (𝑛2)

−1∑1≤𝑖<𝑗≤𝑛{2ℎ𝜏(𝑿𝑖, 𝑿𝑗 ) − 1} with ℎ𝜏 as in Example 3.2.3(5). For mb ∈ {db, sb}, let 𝜏̂mb
𝑛,𝑟
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denote Kendall’s 𝜏-statistic applied to the sample of disjoint or sliding block maxima.
An application of Theorem 3.2.5 yields the following result.

Proposition 3.3.3. Let 𝑑 = 2 and suppose Conditions 3.1.1 and 3.2.1 are met. Then, with
𝜏𝑟 ∶= 𝜏(𝑀 (1)

𝑟,1 , 𝑀
(2)
𝑟,1 ), we have, for mb ∈ {db, sb},

√
𝑚(𝜏̂mb

𝑛,𝑟 − 𝜏𝑟)⇝ (0, 𝜎2mb),

where the asymptotic variances can be represented as a function of the extreme-value copula 𝐶
from (3.1.3) as follows:

𝜎2db = 16

{

∫
[0,1]2

{
𝐶(𝒖) + 𝐶̄(𝒖)

}2 d𝐶(𝒖) − 4( ∫
[0,1]2

𝐶(𝒖) d𝐶(𝒖))
2
}

𝜎2sb = 32 ∫
1

0 (∫
[0,1]2×[0,1]2

{
𝐶(𝒖) + 𝐶̄(𝒖)

}{
𝐶(𝒗) + 𝐶̄(𝒗)

}
d𝐶𝜉 (𝒖, 𝒗)

− 4( ∫
[0,1]2

𝐶(𝒖) d𝐶(𝒖))
2

)
d𝜉.

where 𝐶̄(𝒖) = 1 − 𝑢(1) − 𝑢(2) + 𝐶(1 − 𝑢(1), 1 − 𝑢(2)) denotes the survival copula of 𝐶.

For the case 𝐶 = Π, where Π denotes the independence copula, one can show that
𝜎2db = 4/9, 𝜎2sb = 32(7/12 − 2 log(4/3)) resulting in 𝜎2db/𝜎

2
sb ≈ 1.7428, which has also been

validated in a simulation experiment.

Remark 3.3.4 (Treating 𝜏̂mb
𝑛,𝑟 as an estimator 𝜏 = 𝜏(𝐶)). Proposition 3.3.3 quantifies the

(asymptotic) estimation error when treating 𝜏̂mb
𝑛,𝑟 as an estimator for 𝜏𝑟 . In some situa-

tions one may rather be interested in treating 𝜏̂mb
𝑛,𝑟 as an estimator for 𝜏 = 𝜏(𝐶), with 𝐶

the max-attractor copula from Condition 3.1.1. In that case, a bias term may show up,
which can be calculated more explicitly under some suitable second-oder conditions.

It is instructive to start with the i.i.d. case: let 𝐷 denote the copula of 𝑿1 = (𝑋 (1)
1 , 𝑋 (2)

1 ),
such that the copula 𝐶𝑟 of the block maximum distribution with block size 𝑟 satisfies
𝐶𝑟(𝑢(1), 𝑢(2))1/𝑟 = 𝐷((𝑢(1))1/𝑟 , (𝑢(2))1/𝑟). Condition 3.1.1 implies that, for all 𝒖 = (𝑢(1), 𝑢(2)) ∈
[0, 1]2, lim𝑟→∞ 𝐶𝑟(𝒖) = 𝐶(𝒖). A natural second order condition (Zou et al., 2021) reads as
follows: suppose there exists a function 𝜑 ∶ (0,∞) → (0,∞) with lim𝑟→∞ 𝜑(𝑟) = 0 and a
non-null-function 𝑆 on [0, 1]2 such that

lim
𝑟→∞

𝐶𝑟(𝒖) − 𝐶(𝒖)
𝜑(𝑟)

= 𝑆(𝒖), 𝒖 ∈ [0, 1]2, (3.3.8)

where the convergence is uniform on [𝛿, 1]2, for all 𝛿 > 0. As shown in Zou et al. (2021),
under some mild assumptions, the condition is equivalent to common second order
conditions imposed on the stable tail dependence function 𝐿, and holds for selected
copula families. Moreover, the convergence in (3.3.8) is necessarily uniform on [0, 1]2

and the function 𝜑 is regularly varying of some order 𝜌 ≤ 0.
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

Next, recall that 𝜏𝑟 = 4 ∫ 𝐶𝑟 d𝐶𝑟 − 1. A standard argument shows that

lim
𝑟→∞ ∫

𝐶𝑟 − 𝐶
𝜑(𝑟)

d (𝐶𝑟 − 𝐶) = 0.

Further, ∫ 𝐶 d𝐶𝑟 = ∫ 𝐶𝑟 d𝐶; this equality holding for all pairs of copulas. As a conse-
quence,

1
4
(𝜏𝑟 − 𝜏) = ∫ 𝐶𝑟 d𝐶𝑟 − ∫ 𝐶 d𝐶

= ∫ (𝐶𝑟 − 𝐶) d (𝐶𝑟 − 𝐶) + ∫ (𝐶𝑟 − 𝐶) d𝐶 + ∫ 𝐶 d (𝐶𝑟 − 𝐶)

= 𝑜(𝜑(𝑟)) + 2 ∫ (𝐶𝑟 − 𝐶) d𝐶.

Overall, we obtain that

lim
𝑟→∞

𝜏𝑟 − 𝜏
𝜑(𝑟)

= 8 ∫ 𝑆(𝒖) d𝐶(𝒖).

Hence, if the block size 𝑟 = 𝑟𝑛 is chosen in such a way that the limit 𝜆0 ∶= lim𝑛→∞
√
𝑚𝜑(𝑟) ≥

0 exists, we obtain, under the conditions of Proposition 3.3.3 and in the i.i.d. case,

√
𝑚(𝜏̂mb

𝑛,𝑟 − 𝜏) =
√
𝑚(𝜏̂mb

𝑛,𝑟 − 𝜏𝑟) +
√
𝑚𝜑(𝑟)

𝜏𝑟 − 𝜏
𝜑(𝑟)

⇝ (𝜆0𝐵, 𝜎2mb),

where 𝐵 = 8 ∫ 𝑆(𝒖) d𝐶(𝒖).
Treating the block size 𝑟 as a tuning parameter, the previous result allows to make

statements on rate-optimal choices of 𝑟 . Indeed, assuming that 𝜑(𝑟) = 𝑟𝜌 with 𝜌 < 0 for
simplicity (see Zou et al. (2021) for examples), the previous equation can be restated as

𝜏̂mb
𝑛,𝑟 − 𝜏 ≈𝑑 (𝑟

𝜌𝐵,
𝜎2mb
𝑚 ).

Minimizing the (asymptotic) MSE defined as 𝑟2𝜌𝐵2 + 𝜎2mb/𝑚 with respect to 𝑟 , we obtain
the ‘optimal choice’ 𝑟 ∝ 𝑛−2𝜌/(1−2𝜌), with the (asymptotic) MSE then being of the order
𝑛𝜌/(1−2𝜌).

Finally, note that the previous argumentation remains true in the time series case,
provided we require that the convergence in (3.3.8) holds uniformly on [0, 1]2. How-
ever, it will typically be much harder to calculate 𝐶𝑟 , let alone to obtain asymptotic
expansions.

3.4 Extensions to piecewise stationarity

Environmental data typically involve different forms of non-stationarity. A particular
source is seasonality, which may statistically be approached by restricting attention to
seasons rather than years, bearing in mind that the inner-season variability should be
approximately stationary. This idea may be approached mathematically by working
with data satisfying the following assumption taken from Bücher and Zanger (2023).
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3.4 Extensions to piecewise stationarity

Condition 3.4.1 (Piecewise stationary observation scheme). For sample size 𝑛 ∈ N, we
have observations 𝑿𝑛,1, … , 𝑿𝑛,𝑛 taking values in R𝑑 . Moreover, for some block length
sequence (𝑟𝑛)𝑛 ⊂ N diverging to infinity such that 𝑟𝑛 = 𝑜(𝑛), we have

(𝑿𝑛,1, … , 𝑿𝑛,𝑛) = (𝒀1,1, … , 𝒀1,𝑟𝑛 , 𝒀2,1, … , 𝒀2,𝑟𝑛 , …

… , 𝒀𝑛db,1, … , 𝒀𝑛db,𝑟𝑛 , 𝒀𝑛db+1,1, … , 𝒀𝑛db+1,𝑛−𝑛db𝑟𝑛),

where 𝑛db = ⌊𝑛/𝑟𝑛⌋ and where (𝒀1,𝑡)𝑡 , (𝒀2,𝑡)𝑡 , … denote i.i.d. copies from a stationary time
series satisfying Condition 3.1.1 with continuous marginal c.d.f. 𝐹 . Note that 𝒀𝑗 ,𝑡 should
be regarded as the 𝑡-th observation in the 𝑗-th season.

We refer to Bücher and Zanger (2023) for further discussions of Condition 3.4.1, see
in particular Remark 2.3. For the rest of this section, we tacitly assume Condition 3.4.1
and write 𝑿𝑗 ∶= 𝑿𝑛,𝑗 for simplicity. Note that the triangular array (𝑿𝑛)𝑛 is 𝑟𝑛-dependent,
which in fact simplifies the analysis of the disjoint block maxima method. For the slid-
ing block maxima method however, mathematical challenges arise from the fact that the
sliding block maxima sample is typically non-stationary. Indeed, for 𝑥 ∈ R𝑑 , generally

P (𝑴𝑟 ,1 ≤ 𝑥) ≠ P (𝑿2, … , 𝑿𝑟 ≤ 𝒙) ⋅ P (𝑿𝑟+1 ≤ 𝒙) = P (𝑴𝑟 ,2 ≤ 𝒙) .

In Bücher and Zanger (2023), Lemma 2.4, it is shown that this non-stationarity disap-
pears asymptotically, which suggests that statistical methodology derived under sta-
tionarity assumptions (as in Section 3.2) may also be applicable under Condition 3.4.1.
For deriving respective limit results, some modifications of the previous conditions are
necessary. First of all, the integrability conditions from Condition 3.2.4 take the follow-
ing, slightly more involved form.

Condition 3.4.2. There exists a 𝜈 > 2/𝜔 with 𝜔 from Condition 3.2.1 such that

(a) lim sup𝑟→∞ sup1≤𝑖≤𝑗≤𝑟 ∫ ∫ |ℎ(𝒙, 𝒚)|2+𝜈 dP𝒁𝑟 ,𝑖(𝒙) dP𝒁𝑟 ,𝑗 (𝒚) < ∞,
(b) lim sup𝑟→∞ sup1≤𝑖≤𝑗≤𝑟 E[|ℎ(𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗 )|2+𝜈] < ∞.

It is worth noting that, if there exist monotone functions 𝑔1, 𝑔2 such that |ℎ(𝑥, 𝑦)| ≤
|𝑔1(𝑥)| + |𝑔2(𝑦)|, the inner supremum may be omitted; examples can be found in Sec-
tion 3.3.

Next, we quantify the average non-stationarity for the sliding block maxima. For
𝑖, 𝑗 ∈ {1, … , 𝑟}, let

𝜗𝑟 ,𝑖,𝑗 ∶= E[ℎ(𝒁𝑟 ,𝑖, 𝒁̃𝑟 ,𝑗 )], 𝜗̄𝑟 ∶=
1
𝑟2

∑
1≤𝑖,𝑗≤𝑟

𝜗𝑟 ,𝑖,𝑗 , (3.4.1)

where (𝒁̃𝑟 ,𝑗 )𝑗=1,…,𝑟 is an independent copy of (𝒁𝑟 ,𝑗 )𝑗=1,…,𝑟 . Note that 𝜗𝑟 ,1,1 = 𝜗𝑟 with 𝜗𝑟 from
(3.2.4), while 𝜗𝑟 ,𝑖,𝑗 ≠ 𝜗𝑟 in general. We do however have 𝜗̄𝑟 = 𝜗𝑟 +𝑜(1) under the previous
conditions (see also Lemma B.5 and B.6 in Bücher and Zanger (2023) for similar results).
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

Lemma 3.4.3. Suppose Conditions 3.2.2, 3.4.1 and 3.4.2(a),(b) are met and that ℎ is 𝜆𝜆2𝑑-a.e.
continuous. Then, for 𝑛 → ∞,

E[𝑈 sb
𝑛,𝑟 ,𝑍 ] = 𝜗̄𝑟 +𝑂(𝑚−1), 𝜗̄𝑟 = 𝜗𝑟 + 𝑜(1).

This result suggests that the non-stationarity of the sliding block maxima method
under Condition 3.4.1 may show up in the asymptotic bias of the U-statistic 𝑈 sb

𝑛,𝑟 . The
following assumption requires 𝑟 to be sufficiently large to make this bias negligible.

Condition 3.4.4 (Negligibility of the bias due to non-stationarity). The limit𝐷 ∶= lim𝑛→∞ 𝐷𝑛

exists, where

𝐷𝑛 =
√
𝑚(𝜗̄𝑟 − 𝜗𝑟). (3.4.2)

Theorem 3.4.5. Within the setting of Condition 3.4.1, suppose that the block size and the
underlying time series (𝒀𝑗 ,𝑡)𝑡 satisfy Condition 3.2.1(a),(b) and that the kernel satisfies Condi-
tion 3.2.2. Additionally, for mb = db, suppose that Condition 3.2.4(a) is met, and for mb = sb,
suppose that Condition 3.4.2 and 3.4.4 are met. Then, if ℎ is 𝜆𝜆2𝑑-a.e. continuous and bounded
on compact sets, we have, for 𝑛 → ∞,

√
𝑚

𝑓 (𝒂𝑟 , 𝒃𝑟)
(𝑈mb

𝑛,𝑟 − 𝜃𝑟)⇝
⎧⎪⎪
⎨⎪⎪⎩

 (0, 𝜎2db), mb = db

 (𝐷, 𝜎2sb), mb = sb

with 𝜎2mb from (3.2.9) satisfying 𝜎2sb ≤ 𝜎2db. If, additionally, the limit 𝐵 = lim𝑛→∞ 𝐵𝑛 with 𝐵𝑛
from (3.2.12) exists, then, again for 𝑛 → ∞,

√
𝑚

𝑓 (𝒂𝑟 , 𝒃𝑟)
(𝑈mb

𝑛,𝑟 − 𝜗̃𝑟)⇝
⎧⎪⎪
⎨⎪⎪⎩

 (𝐵, 𝜎2db), mb = db,

 (𝐵 + 𝐷, 𝜎2sb), mb = sb

with 𝜗̃𝑟 from (3.2.11).

3.5 Simulation study

A Monte Carlo simulation study was conducted to evaluate the finite sample perfor-
mance of two selected estimators based on U-statistics: the empirical variance (univari-
ate) as well as Kendall’s 𝜏 statistic (bivariate). The study mainly aims at comparing the
disjoint and sliding block maxima method for various extreme value indices and time
series models. The discussion is divided into two subsections, depending on the nature
of the target parameter: it can either be a parameter of the block maximum distribution
with some fixed 𝑟 (e.g., 𝑟 = 365 or 𝑟 = 90), or a parameter of the max-attractor distri-
bution from Condition 3.1.1; in that case, 𝑛 should be considered fixed while 𝑟 may be
treated as a tuning parameter.
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3.5 Simulation study

3.5.1 Estimating parameters of the block maximum distribution

3.5.1.1 Estimating the block maxima variance In Section 3.3.1, the empirical vari-
ance based on sliding block maxima, 𝜎̂2𝑛,𝑟 ,sb, was found to be an asymptotically more
efficient estimator of 𝜎2𝑟 ∶= Var(𝑀𝑟 ,1) than its disjoint blocks counterpart, 𝜎̂2𝑛,𝑟 ,db. We as-
sess the performance in finite-sample situations for data-generating processes made up
from the following marginal and temporal models:

Stationary distribution of𝑋𝑡 : We consider the generalized Pareto distribution GPD(0, 1, 𝛾)
with shape parameter 𝛾 ∈ {−0.4, −0.2, 0, 0.1}, see (3.3.2). Note that the largest value of
𝛾 = 0.1 is close to the non-integrability point 0.25 for the variance estimator.

Time series models: In addition to the i.i.d. case, two time series models were con-
sidered, each with three parameter choices. The first model is the (transformed) AR-
MAX(1) model, see Section 3.3.1, with time series parameter 𝛼 ∈ {0.25, 0.5, 0.75}; note that
the extremal index is 𝜃 = 1 − 𝛼. As the second model we chose the Cauchy-AR model,
defined as the stationary solution (𝑌𝑡)𝑡 of the Cauchy-AR recursion

𝑌𝑡 = 𝜙𝑌𝑡−1 +𝑊𝑡 , 𝑡 ∈ Z, (𝑊𝑡)𝑡
𝑖.𝑖.𝑑.∼ Cauchy(0, 1),

with time series parameter 𝜙 ∈ {0.25, 0.5, 0.75}. This corresponds to the extremal index
𝜃 = 1 − 𝜙, see, e.g., Problem 7.9 in Kulik and Soulier (2020). Realizations from the model
were transformed to the GPD(0, 1, 𝛾) distribution by setting 𝑋𝑡 = 𝐹←𝛾 (𝐹𝑌 (𝑌𝑡)), where 𝐹𝑌
and 𝐹𝛾 denote the c.d.f. of the Cauchy(0,1) and the GPD(0,1,𝛾)-distribution, respectively.

Combining each marginal model with each time series models results in a total of
4 × 7 = 28 different models. Throughout, we chose to fix the block size to 𝑟 = 90, which
roughly corresponds to the number of days in the summer months and which is a com-
mon block length in environmental applications. The number of blocks, denoted as 𝑚,
ranged from 10 to 100, resulting in corresponding sample sizes ranging from 𝑛 = 900
to 𝑛 = 9, 000 observations. The performance of the estimators was assessed based on
approximating the MSE, the squared bias and the variance of the estimators based on
𝑁 = 10, 000 simulation repetitions. For assessing the bias, the true variance 𝜎290 was de-
termined in a preliminary simulation experiment involving a huge sample of size 106

drawn from the distribution of 𝑀𝑟 ,1; with one such sample for each of the 28 models.
The results for the i.i.d. and the ARMAX-models are illustrated in Figure 3.2, where

we depict the ratio MSE(𝜎̂2𝑛,𝑟 ,db)/MSE(𝜎̂2𝑛,𝑟 ,sb) as a function of the number of seasons (re-
sults for the Cauchy-AR-model are omitted because they are qualitatively similar).
Across all considered numbers of seasons, tail indices and time series parameter, the
sliding blocks estimator consistently outperforms its disjoint blocks counterpart. No-
tably, the depicted ratio is significantly larger than one for small tail indices and for
small sample sizes. This particular observation is promising because obtaining large
sample sizes is sometimes challenging in the area of extreme value statistics. Also, it
should be noted that the serial dependence does not substantially influence the relative
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Figure 3.2: For the estimation of 𝜎2𝑟 = Var(𝑀𝑟 ,1), the ratio MSE(𝜎̂2𝑛,𝑟 ,db)/MSE(𝜎̂2𝑛,𝑟 ,sb) is de-
picted as a function of number of blocks 𝑚.

performance (as was to be expected from the asymptotic results). Finally, we would
like to report that the estimation variance was found to be of much larger order than
the bias, whence the MSE-ratio is nearly the same as the respective variance ratio. This
is different when the target variable is a parameter of the max-attractor distribution 𝐺
from Condition 3.1.1, as will be discussed in Section 3.5.2 below.

3.5.1.2 Estimating Kendall’s tau We investigate the finite-sample performance in
the bivariate case for the estimation of Kendall’s 𝜏 = 𝜏𝑟 = 𝜏(𝑀 (1)

𝑟,1 , 𝑀
(2)
𝑟,1 ) based on the

estimators 𝜏̂db𝑛,𝑟 and 𝜏̂sb𝑛,𝑟 from Section 3.3.3. Note that both Kendall’s 𝜏 and its estimators
do not depend on the marginal distributions (in case they are continuous). The data
generating processes are as follows:

Time series models: Three types of time series models were considered: bivariate ver-
sions of the ARMAX(1) and Cauchy-AR(1) model from the previous section as well as
i.i.d. observations. The bivariate ARMAX(1) model is defined as the stationary bivariate
solution to the recursion equation:

𝑋 (𝑗)
𝑡 = max{𝛼𝑋 (𝑗)

𝑡−1, (1 − 𝛼)𝑊
(𝑗)
𝑡 }, 𝑡 ∈ Z, 𝑗 ∈ {1, 2},

where 𝛼 ∈ (0, 1] and where (𝑾𝑡)𝑡 is an i.i.d. sequence with Fréchet(1)-distributed margins
and with copula as specified below. Throughout, the value of 𝛼 was fixed to 0.5; and
the i.i.d. case is obtained for 𝛼 = 0. The bivariate Cauchy-AR(1) model is defined as the
stationary solution of the bivariate Cauchy-AR(1) recursion

𝑋 (𝑗)
𝑡 = 𝜙𝑋 (𝑗)

𝑡−1 +𝑊
(𝑗)
𝑡 , 𝑡 ∈ Z, 𝑗 ∈ {1, 2},

where 𝜙 ∈ (0, 1] and where (𝑾𝑡)𝑡 is an i.i.d. sequence with Cauchy(1) margins and with
copula as specified below. Throughout, the value of 𝜙 was fixed to 0.5.

Copula of 𝑾𝑡 : Seven different copulas were considered: the independence copula, the
Gaussian copula, the 𝑡𝜈-copula with 𝜈 = 4 degrees of freedom, and the Gumbel-Hougard
copula, where the parameter of three last-named copulas was chosen in such a way
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Figure 3.3: MSE of 𝜏̂mb
𝑛,𝑟 (upper panel) and MSE ratio MSE(𝜏̂db𝑛,𝑟)/MSE(𝜏̂sb𝑛,𝑟) (lower panel)

plotted against the number of blocks 𝑚.

that the associated value of Kendall’s tau is in {0.3, 0.6}. Note that the Gaussian copula
is tail independent, while the 𝑡- and Gumbel copula exhibit upper tail dependence.
The upper tail dependence coefficients as a function of Kendall’s tau are given by 2 ⋅
𝑡5(−

√
5(1 − sin(𝜋𝜏/2))/(1 + sin(𝜋𝜏/2)) ∈ {0.23, 0.5} and 2 − 21−𝜏 ∈ {0.375, 0.68} for the 𝑡4 and

Gumbel-Hougard copula, respectively; see Embrechts et al. (2001).

Overall, we obtain 3 × 7 = 21 different models. As in the previous section, we fix the
block length to 𝑟 = 90 and vary 𝑚 between 10 and 100, resulting in sample sizes 𝑛 = 𝑚𝑟
ranging from 900 to 9,000 observations (results for other choices of fixed 𝑟 were found
to be qualitatively similar). The estimators are evaluated in terms of the mean squared
error (MSE), the bias and the variance, based on 𝑁 = 1, 000 simulation repetitions. The
true value of 𝜏𝑟 was assessed in a preliminary simulation involving a sample of size
100, 000 from 𝑴𝑟 ,1.

The results are presented in Figure 3.3, where we restrict attention to the Cauchy-
AR(1) model, as the performance in the other two time series is nearly identical. As in
the previous section, the bias was found to be of much smaller order than the variance,
whence we further restrict attention to MSE(𝜏̂db𝑛,𝑟) and to the MSE ratio MSE(𝜏̂db𝑛,𝑟)/MSE(𝜏̂sb𝑛,𝑟).
We observe that the sliding blocks estimator consistently outperforms the disjoint blocks
counterpart. The level of dependence impacts the performance in that the estimation is
more precise for higher dependence (for both estimators), and in that the advantage of
the sliding blocks estimator over its disjoint blocks counterpart is highest for low lev-
els of dependence/independence. Furthermore, as in the previous section, the sliding
blocks estimator’s advantage is slowly decreasing in the number of blocks.
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

3.5.2 Estimating parameters of the max-attractor distribution

If the target variable is a parameter of the max-attractor distribution, the total sample
size 𝑛 can be considered fixed, with the block size 𝑟 serving as a tuning parameter to be
chosen by the statistician. The arguments from Remark 3.3.4 then suggest that a bias-
variance trade-off shows up: a large block size should correspond to small bias and
large variance, and vice versa.

We restrict attention to the estimators 𝜏̂db𝑛,𝑟 and 𝜏̂sb𝑛,𝑟 from Section 3.3.3, now considered
as estimators for 𝜏 = 𝜏(𝑍 (1), 𝑍 (2)) with (𝑍 (1), 𝑍 (2)) from Condition 3.1.1. We chose to fix
the sample size to 𝑛 = 1000, and consider various choices for the block length between
𝑟 = 4 and 𝑟 = 50. For simplicity, we restrict attention to the iid case, where explicit
calculations of 𝜏 = 𝜏(𝐶) are possible such that we do not need to rely on preliminary
Monte Carlo approximations. Regarding the copula 𝐷 of 𝑿𝑖 = (𝑋 (1)

𝑖 , 𝑋 (2)
𝑖 ), we chose to

work with to the outer power transform of the Clayton copula (see Bücher and Segers
(2014), Formula (4.5)) with parameter 𝜃 fixed to 𝜃 = 1 and with parameter 𝛽 chosen in
such a way that Kendall’s tau 𝜏 = 𝜏(𝐶) of the extreme value attractor 𝐶 (which is the
Gumbel-Hougaard copula with parameter 𝛽) varies in {0.35, 0.4, 0.45, 0.5}.

The results, based on 𝑁 = 1000 simulation runs each, are summarized in Figure 3.4.
As expected, the squared bias is an increasing function of 𝑚, while the variance is de-
creasing. In fact, the curves agree with the theoretical results from Remark 3.3.4 and
Section 3.1 in Zou et al. (2021), where it is shown that 𝜑 from (3.3.8) can be chosen as 𝑟−1

for i.i.d. samples from the outer power Clayton copula. As a consequence, the squared
bias is of the theoretical order 𝑟−2 = (𝑚/𝑛)2, while the variance is of the order 𝑚−2. The
sum of the two rates corresponds to the MSE, which is a u-shaped function of 𝑚 with
minimal value attained at a point proportional to 𝑚 = 𝑛2/3, which in our case is 𝑛 = 100.
This is indeed close to the argmins of the MSE-curves depicted in Figure 3.4.

3.6 Proofs

Recall the definitions of 𝜃𝑟 , 𝜗𝑟 , 𝜎2mb from (3.1.5), (3.2.4) and (3.2.9), respectively.

3.6.1 Proofs for Section 3.2

Proof of Theorem 3.2.5. Recall the definition of 𝑈 (mb)
𝑛,𝑟 ,𝒁 in (3.2.3). By Condition 3.2.2 we

have
𝑈mb
𝑛,𝑟 − 𝜃𝑟
𝑓 (𝒂𝑟 , 𝒃𝑟)

= 𝑈 (mb)
𝑛,𝑟 ,𝒁 − 𝜗𝑟 .

Hence it suffices to show that

√
𝑚 ⋅ (𝑈mb

𝑛,𝑟,𝒁 − 𝜗𝑟)⇝ (0, 𝜎2mb), (3.6.1)
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Figure 3.4: Mean squared error (top row), squared bias (middle row) and estimation
variance (bottom row) when considering 𝜏̂mb

𝑛,𝑟 as an estimator for 𝜏 = 𝜏(𝐶)
with fixed sample size 𝑛 = 1000. From left to right: Kendall’s tau of the
attractor copula 0.35, 0.4, 0.45, 0.5.

for mb ∈ {db, sb} and

𝜎2sb ≤ 𝜎2db. (3.6.2)

For the proof of (3.6.1) we will use a Hoeffding decomposition and verify weak conver-
gence of the linear part to the normal limit and 𝐿2-convergence to zero of the asymptot-
ically degenerate part. For both parts we will employ common blocking techniques to
deal with the serial dependence, (see e.g., Dehling and Philipp (2002), page 31). Define

ℎ1,𝑟 ∶ R𝑑 → R, 𝒙 ↦ ℎ1,𝑟(𝒙) ∶= E[ℎ(𝑥, 𝒁𝑟 ,1)] − 𝜗𝑟 (3.6.3)

ℎ2,𝑟 ∶ R2𝑑 → R (𝒙, 𝒚) ↦ ℎ2,𝑟(𝒙, 𝒚) ∶= ℎ(𝒙, 𝒚) − ℎ1,𝑟(𝒙) − ℎ1,𝑟(𝒚) − 𝜗𝑟

and notice the algebraic identity

𝑈mb
𝑛,𝑟 − 𝜗𝑟 =

2
𝑛mb

∑
𝑖∈𝐼mb

𝑛

ℎ1,𝑟(𝒁𝑟 ,𝑖) +
2

𝑛mb ⋅ (𝑛mb − 1)
∑

(𝑖,𝑗)∈𝐽mb
𝑛

ℎ2,𝑟(𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗 )

≡ 𝐿mb
𝑛,𝑟 +𝐷

mb
𝑛,𝑟 . (3.6.4)
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3 Limit theorems for non-degenerate U-statistics of block maxima for time series

Proof of (3.6.1) for mb = db: we start by proving

√
𝑚 ⋅ 𝐿db𝑛,𝑟 =

2
√
𝑚

∑
𝑖∈𝐼db𝑛

ℎ1,𝑟(𝒁𝑟 ,𝑖)⇝ (0, 𝜎2db). (3.6.5)

By Lemma 3.7.5, we may switch to i.i.d. copies of 𝒁𝑟 ,𝑖. The assertion then follows from
Ljapunov’s central limit theorem, with the Ljapunov Condition being a straightforward
consequence of Lemma 3.7.2 and Condition 3.2.4.

In the next part we show that the (asymptotically) degenerate part converges to zero
in 𝐿2, i.e., E[(

√
𝑚 ⋅ 𝐿db𝑛,𝑟)2] = 𝑜(1). For that purpose, it is sufficient to show that

𝑚
𝑛4db

∑
(𝑖1,𝑖2)∈𝐽 db𝑛
(𝑗1,𝑗2)∈𝐽 db𝑛

E[ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2)ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)] = 𝑜(1). (3.6.6)

The Cauchy-Schwarz inequality, standard inequalities for the expectation and Condi-
tion 3.2.4 imply that

sup
(𝑖1,𝑖2)∈𝐽 db𝑛
(𝑗1,𝑗2)∈𝐽 db𝑛

|| E[ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2)ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)]|| ≤ sup
𝑠∈N

E[ℎ22,𝑟(𝒁𝑟 ,1, 𝒁𝑟 ,1+𝑠)]

= 𝑂(1).

Consider a tuple (𝒊, 𝒋) = (𝑖1, 𝑖2, 𝑗1, 𝑗2) ∈ {(𝑖1, 𝑖2) ∈ 𝐽 db𝑛 , (𝑗1, 𝑗2) ∈ 𝐽 db𝑛 } such that both the
distance between the smallest, min(𝒊, 𝒋), and the second smallest index and the largest,
max(𝒊, 𝒋), and the second largest index is at most 2𝑟 . Clearly, the cardinality of the set
of all those (𝒊, 𝒋) is of the order 𝑂(𝑚2), whence the expression in (3.6.6) with the sum
restricted to those tuples is of the order 𝑂(𝑚−1). It is hence sufficient to consider the
sum over those summands for which either the distance between the smallest index
and all other indices is strictly larger than 2𝑟 , or the distance between the largest index
and all other indices is strictly larger than 2𝑟 . We only consider the first case, as the
other can be treated similarly. Without loss of generality, let 𝑖1 be the smallest index,
and let 𝑛,db = denote the respective set of indices, that is, 𝑛,db = {(𝒊, 𝒋) ∈ 𝐽 db𝑛 × 𝐽 db𝑛 ∶
𝑖2 − 𝑖1 > 2𝑟, 𝑗1 − 𝑖1 > 2𝑟}.

For each tuple (𝒊, 𝒋) ∈ 𝑛,db, we may use Berbee’s coupling Lemma (Berbee, 1979) to
construct a random variable 𝒁∗

𝑟,𝑖1 having the same distribution as 𝒁𝑟 ,𝑖1 that is indepen-
dent of (𝒁𝑟 ,𝑖2 , 𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2) and which satisfies P(𝒁𝑟 ,𝑖1 ≠ 𝒁∗

𝑟,𝑖1) ≤ 𝛽(𝜎(𝒁𝑟 ,𝑖1), 𝜎(𝒁𝑟 ,𝑖2 , 𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)) ≤
𝛽(𝑟) where 𝜎(𝑋) denotes the initial 𝜎-field of 𝑋. Now decompose

E[ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2)ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)]

= E[
{
ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2) − ℎ2,𝑟(𝒁

∗
𝑟,𝑖1 , 𝒁𝑟 ,𝑖2)

}
ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)]

+ E[ℎ2,𝑟(𝒁∗
𝑟,𝑖1 , 𝒁𝑟 ,𝑖2)ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)] =∶ 𝐼

(𝒊,𝒋)
1,𝑛 + 𝐼 (𝒊,𝒋)2,𝑛 .

Using stationarity, basic properties of the conditional expectation and the properties of
𝒁∗
𝑟,𝑖1 we obtain, via conditioning on (𝒁𝑟 ,𝑖2 , 𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2), that 𝐼 (𝒊,𝒋)2,𝑛 ≡ 0.
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Next, repeated applications of Hölder’s inequality imply that, uniformly in (𝒊, 𝒋) ∈
𝑛,db,

|𝐼 (𝒊,𝒋)1,𝑛 | ≤ E [𝟏
{
𝒁𝑟 ,𝑖1 ≠ 𝒁

∗
𝑟,𝑖1

} ||
{
ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2) − ℎ2,𝑟(𝒁

∗
𝑟,𝑖1 , 𝒁𝑟 ,𝑖2)

}

× ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)||]
≲ 𝛽(𝑟)𝜈/(2+𝜈),

where we have used Condition 3.2.4. Overall,

𝑚
𝑛4db

∑
(𝒊,𝒋)∈𝑛,db

|E[ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2)ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)]| ≲ 𝑚 ⋅ sup
(𝒊,𝒋)∈𝐼

|𝐼 (𝒊,𝒋)1,𝑛 + 𝐼 (𝒊,𝒋)2,𝑛 |

≲ (𝑚
1+2/𝜈𝛽(𝑟))

𝜈/(2+𝜈)

which converges to zero by Condition 3.2.1 (c) as 2/𝜈 < 𝜔. This implies (3.6.6), and in
combination with (3.6.4) and (3.6.5) we obtain (3.6.1).

Proof of (3.6.1) for mb = sb: In order to show that the degenerate part of the rescaled
sliding blocks U-statistic converges to zero, it is sufficient to show that

𝑚
𝑛4sb

∑
(𝑖1,𝑖2)∈𝐽 sb𝑛
(𝑗1,𝑗2)∈𝐽 sb𝑛

E[ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2)ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)] → 0.

This can be worked out analogously to the disjoint case: again, we may restrict the sum
in the upper display to tuples in 𝐽 sb𝑛 = {(𝒊, 𝒋) ∈ 𝐽 sb𝑛 × 𝐽 sb𝑛 ∶ 𝑖2 − 𝑖1 > 2𝑟, 𝑗1 − 𝑖1 > 2𝑟}, as the
set of the remaining tuples is of the order 𝑂((𝑛𝑟)2). We can then copy the disjoint blocks
proof verbatim by replacing 𝑛,db and 𝑛db with 𝑛,sb and 𝑛sb.

It remains to show
2
√
𝑚
𝑛

∑
𝑖∈𝐼 sb𝑛

ℎ1,𝑟(𝒁𝑟 ,𝑖)⇝ (0, 𝜎2sb).

For this purpose use Theorem 3.7.7 with 𝑓𝑟 ,𝑠 ∶= ℎ1,𝑟 , 𝑓 ∶= ℎ1 and note that all conditions
are satisfied, where we use Lemma 3.7.6 and an easy adaptation of Lemma B.15 in
Bücher and Zanger (2023) to obtain the weak convergence condition in (3.7.3).

Proof of (3.6.2): The inequality follows from Lemma A.10 in Zou et al. (2021), where
𝑋𝑛,𝑖 ∶= ℎ1,𝑟(𝒁𝑟 ,𝑖) and the preconditions of Lemma A.10 can be deduced from Condition
3.2.1(a), (c) and 3.2.4(a).

Proof of Corollary 3.2.6. By Condition 3.2.2 and the assumption on 𝐵𝑛, we have

√
𝑚

𝑓 (𝒂𝑟 , 𝒃𝑟)
(𝜃𝑟 − 𝑓 (𝒂𝑟 , 𝒃𝑟)(𝜗 + 𝓁(𝒂𝑟 , 𝒃𝑟)) =

√
𝑚(𝜗𝑟 − 𝜗) = 𝐵𝑛 = 𝐵 + 𝑜(1).

Hence, the assertion follows from Theorem 3.2.5 and Slutsky’s theorem.
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3.6.2 Proofs for Section 3.3

Proof of Corollary 3.3.1. Note that |ℎVar(𝑥, 𝑦)|2+𝜈/2 ≤ 22+𝜈/2(|𝑥|4+𝜈 + |𝑦|4+𝜈). Hence, by as-
sumption, Condition 3.2.4 is met for a 𝜈 > 0 as in the formulation of Theorem 3.2.5. The
statement follows by the continuity of ℎVar and Example 3.2.3.

Proof of Equation (3.3.3). Fix 𝛾 < 1/4 and omit the lower index 1 everywhere; e.g., write
𝑍𝑟 instead of 𝑍𝑟 ,1. We need to verify the conditions of Corollary 3.3.1.

We start by proving Condition 3.1.1, for which we restrict attention to the case 𝛾 > 0
since the other cases can be treated similarly. Using 𝐹←𝑊 (𝐹𝛾(𝑡)) = −1/ log{1 − (1 + 𝛾𝑡)−1/𝛾 }
for 𝑡 > 0 and equation (10.5) from Beirlant et al. (2004) we have

P(
𝑀𝑟 − 𝑏𝑟
𝑎𝑟

≤ 𝑥) = exp [−
1 + (1 − 𝛼)(𝑟 − 1)
𝐹←𝑊 (𝐹𝛾(𝑎𝑟𝑥 + 𝑏𝑟)) ]

= exp [𝑟(1 − 𝛼) log{1 − (1 + 𝛾(𝑎𝑟𝑥 + 𝑏𝑟))−1/𝛾 }] + 𝑜(1)

= exp [−𝑟(1 − 𝛼)(1 + 𝛾(𝑎𝑟𝑥 + 𝑏𝑟))−1/𝛾] + 𝑜(1)

=𝐺𝛾(𝑥) + 𝑜(1),

where we substituted 𝑎𝑟 = (𝑟(1 − 𝛼))𝛾 , 𝑏𝑟 = {(𝑟(1 − 𝛼))𝛾 − 1}/𝛾. Hence Condition 3.1.1 is
satisfied.

Condition 3.2.1(a) holds by assumption. Conditions (b) and (c) hold since 𝑟 = 𝑜(𝑛3)
and since there exists 𝑐 > 0 with 𝛼(𝑘) ≤ 𝛽(𝑘) ≤ exp(−𝑐𝑘) for 𝑘 ∈ N by the discussion in
Section 3.3.1. Note that (c) does hold for all 𝜔 > 0.

In view of the latter statement, it remains to prove lim sup𝑟 E[|𝑍𝑟 |4+𝜈] < ∞ for some 𝜈 >
0. Note that this in turn is equivalent to lim sup𝑟 E[|𝑍 ′

𝑟 |4+𝜈] < ∞, where 𝑍 ′
𝑟 ∶= (𝑀𝑟 − 𝑏′𝑟)/𝑎′𝑟

and where 𝑏′𝑟 ∈ R, 𝑎′𝑟 > 0 are sequences with 𝑍 ′
𝑟 ⇝ GEV(𝜇, 𝜎, 𝛾) for some 𝜇 ∈ R, 𝜎 > 0.

Define 𝑎′𝑟 ∶= 𝑟𝛾 and 𝑏′𝑟 ∶= (𝑟𝛾 − 1)/𝛾 , where the latter is defined by continuity as
𝑏′𝑟 = log 𝑟 if 𝛾 = 0. The p.d.f. of 𝑍 ′

𝑟 is then given by

𝑓𝑍 ′
𝑟
(𝑡) = (1 − 𝛼 + 𝛼/𝑟) ⋅

⎧⎪⎪
⎨⎪⎪⎩

(1 + 𝛾𝑡)−(1+1/𝛾) (1 −
(1+𝑡𝛾)−1/𝛾

𝑟 )
𝑟(1−𝛼)+𝛼−1

, 𝛾 ≠ 0

𝑒−𝑡 (1 − 𝑒−𝑡
𝑟 )

𝑟(1−𝛼)+𝛼−1
, 𝛾 = 0

for 𝑡 ∈ supp(𝑍̃𝑟). We will only present the case 𝛾 > 0 as the other cases use similar ideas.
Substituting 1 + 𝑡𝛾 , we obtain

E[|𝑍̃𝑟 |4+𝜈]

=
1 − 𝛼 + 𝛼/𝑟

𝛾 ∫
∞

1/𝑟𝛾 (
|𝑡 − 1|
𝛾 )

4+𝜈
𝑡−1−1/𝛾(1 −

𝑡−1/𝛾

𝑟 )
𝑟(1−𝛼)+𝛼−1

d𝑡

≤
1 − 𝛼 + 𝛼/𝑟

𝛾5+𝜈

{

∫
1/2

1/𝑟𝛾
𝑡−1−1/𝛾(1 −

𝑡−1/𝛾

𝑟 )
𝑟(1−𝛼)+𝛼−1

d𝑡

+ ∫
∞

1/2
𝑡3+𝜈−1/𝛾(1 −

𝑡−1/𝛾

𝑟 )
𝑟(1−𝛼)+𝛼−1

d𝑡

}

=∶ 𝐼𝑟1 + 𝐼𝑟2
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By the monotone convergence theorem the first integral converges to ∫ 1/20 𝑡−1−1/𝛾 exp(−(1−
𝛼)𝑡−1/𝛾) d𝑡 < ∞; hence lim𝑟→∞ 𝐼𝑟1 < ∞. Finally, let 𝜈 = 1/(2𝛾) − 2 and invoke the monotone
convergence theorem again to obtain

lim
𝑟→∞

𝐼𝑟2 =
1 − 𝛼
𝛾3+𝛾/2 ∫

∞

1/2
𝑡1−1/(2𝛾) exp(−(1 − 𝛼)𝑡−1/𝛾) d𝑡 < ∞

as 1 − 1/(2𝛾) < −1. Overall, we have shown that lim sup𝑟 E[|𝑍𝑟 |4+𝜈] < ∞ as asserted.
Using similar ideas as before, one can show that 𝑛 = 𝑜(𝑟3) implies lim𝑛→∞ 𝐵𝑛 = 0.

Proof of Proposition 3.3.2. Write ℎpwm,2 = ℎpwm and ℎ̃pwm,2 = ℎ̃pwm. First of all, we have
√
𝑚
𝑎𝑟

{
𝑈mb
𝑛,𝑟 (ℎpwm) − 𝑈

mb
𝑛,𝑟 (ℎ̃pwm)

}
= 𝑆mb

𝑛 + 𝑅mb
𝑛

where

𝑆mb
𝑛 =

√
𝑚(

𝑛mb

2 )

−1
∑

(𝑖,𝑗)∈𝐽mb𝑛
𝑗−𝑖>2𝑟

{
ℎpwm(𝑍𝑟 ,𝑖, 𝑍𝑟 ,𝑗 ) − ℎ̃pwm(𝑍𝑟 ,𝑖, 𝑍𝑟 ,𝑗 )

}

𝑅mb
𝑛 =

√
𝑚(

𝑛mb

2 )

−1
∑

(𝑖,𝑗)∈𝐽mb𝑛
𝑗−𝑖≤2𝑟

{
ℎpwm(𝑍𝑟 ,𝑖, 𝑍𝑟 ,𝑗 ) − ℎ̃pwm(𝑍𝑟 ,𝑖, 𝑍𝑟 ,𝑗 )

}
.

The number of summands in 𝑅mb
𝑛 is of the order 𝑂(𝑛𝑟) for mb = sb and of the order 𝑂(𝑚)

for mb = db, whence 𝑅mb
𝑛 = 𝑂𝐿2(𝑚−1/2) = 𝑜𝐿2(1) by the integrability assumption.

Next, we have

𝑆mb
𝑛 =

√
𝑚(

𝑛mb

2 )

−1
∑

(𝑖,𝑗)∈𝐽mb𝑛
𝑗−𝑖>2𝑟

1
2
𝟏(𝑍𝑟 ,𝑖 = 𝑍𝑟 ,𝑗 )𝑍𝑟 ,𝑖

which is zero with probability one by the no-ties assumption; note that all indices in the
sum refer to blocks that do not overlap.

The second statement follows from Corollary 3.2.6, applied to 𝑈mb
𝑛,𝑟 (ℎ̃pwm). Finally, the

inequality for the asymptotic variances can be found in Bücher and Zanger (2023).

Proof of Proposition 3.3.3. Recall Example 3.2.3(5) and apply Theorem 3.2.5. A short cal-
culation yields the formulas for the asymptotic variances.

3.6.3 Proofs for Section 3.4

Proof of Lemma 3.4.3. For 𝜉 ∈ (0, 1), let 𝜉𝑟 = 1 + ⌊𝑟𝜉⌋. Then,

𝜗̄𝑟 = ∫
1

0
∫

1

0
E[ℎ(𝒁𝑟 ,𝜉𝑟 , 𝒁̃𝑟 ,𝜉 ′𝑟 )] d𝜉 d𝜉

′

By Lemma 3.7.9, we have 𝒁𝑟 ,𝜉𝑟 ⇝ 𝒁 ∼ 𝐺 for any 𝜉 ≥ 0. Hence, by independence and
the continuous mapping theorem, ℎ(𝒁𝑟 ,𝜉𝑟 , 𝒁̃𝑟 ,𝜉 ′𝑟 ) ⇝ ℎ(𝒁, 𝒁̃). Therefore, by the previous

39
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display, dominated convergence (use Condition 3.4.2(a)) and Example 2.21 in van der
Vaart (1998), we obtain 𝜗̄𝑟 = 𝜗 + 𝑜(1). This implies the second statement, since 𝜗𝑟 =
𝜗 + 𝑜(1) by Lemma 3.7.1.

For the first convergence assume that 𝑛 = 𝑚𝑟 for simplicity. We have

E[𝑈 sb
𝑛,𝑟 ,𝑍 ] =

1
𝑛sb(𝑛sb − 1)

∑
1≤𝑖≠𝑗≤𝑛sb
𝑗−𝑖>2𝑟

E[ℎ(𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗 )] + 𝑂(𝑚−1),

where the 𝑂-term is due to leaving nearby summands out. Next, by independence,
piecewise stationarity and including nearby summands again,

∑
1≤𝑖≠𝑗≤𝑛sb
𝑗−𝑖>2𝑟

E[ℎ(𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗 )] = ∑
1≤𝑖≠𝑗≤𝑛sb
𝑗−𝑖>2𝑟

E[ℎ(𝒁𝑟 ,𝑖, 𝒁̃𝑟 ,𝑗 )] = 𝑚2 ∑
1≤𝑖,𝑗≤𝑟

𝜗𝑟 ,𝑖,𝑗 +𝑂(𝑟𝑛).

Overall,

E[𝑈 sb
𝑛,𝑟 ,𝑍 ] =

𝑚2𝑟2

𝑛sb(𝑛sb − 1)
𝜗̄𝑟 +𝑂(𝑚−1) = 𝜗̄𝑟 +𝑂(𝑚−1).

Proof of Theorem 3.4.5. For mb = db, (𝒁𝑟 ,𝑖)𝑖∈𝐼db𝑛 is an i.i.d. sample. Thus the proof essen-
tially is an easier version of the proof of Theorem 3.2.5.

For mb = sb note that, by Lemma 3.4.3, Conditions 3.4.4 and 3.2.2, it is sufficient to
show that

√
𝑚(𝑈 sb

𝑛,𝑟 ,𝑍 − E[𝑈 sb
𝑛,𝑟 ,𝑍 ])⇝ (0, 𝜎2sb). Note that we might replace 𝑛 − 𝑟 + 1 with 𝑛,

since (𝑛 − 𝑟 + 1)/𝑛 = 1 + 𝑂(𝑚−1). Unlike in the situation from Theorem 3.2.5, the sliding
block maxima sample is not stationary anymore, which requires a different version of
the Hoeffding decomposition. For 1 ≤ 𝑖, 𝑗 ≤ 𝑛, introduce functions ℎ1,𝑟 ,𝑖∶ R𝑑 → R and
ℎ2,𝑟 ,𝑖,𝑗 ∶ R2𝑑 → R by

ℎ1,𝑟 ,𝑖(𝒙) ∶= E[ℎ (𝒙, 𝒁𝑟 ,𝑖)] − 𝜗𝑟 ,𝑖,𝑖

ℎ2,𝑟 ,𝑖,𝑗 (𝒙, 𝒚) ∶= ℎ(𝒙, 𝒚) − ℎ1,𝑟 ,𝑖(𝒙) − ℎ1,𝑟 ,𝑗 (𝒚) − 𝜗𝑟 ,𝑖,𝑗 ,

with 𝜗𝑟 ,𝑖,𝑗 from (3.4.1). Note, that by Lemma 3.4.3

𝑈 sb
𝑛,𝑟 ,𝑍 −

2
𝑛(𝑛 − 1)

∑
1≤𝑖<𝑗≤𝑛

E[ℎ(𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗 )]

=
2
𝑛

𝑛
∑
𝑖=1

ℎ1,𝑟 ,𝑖(𝒁𝑟 ,𝑖) +
2

𝑛(𝑛 − 1)
∑

1≤𝑖<𝑗≤𝑛
ℎ2,𝑟 ,𝑖,𝑗 (𝒁𝑟 ,𝑖, 𝒁𝑟 ,𝑗 ) + 𝑂(𝑚−1) (3.6.7)

≡ 𝐿sb𝑛,𝑟 +𝐷
sb
𝑛,𝑟 +𝑂(𝑚

−1)

The asymptotic normality of
√
𝑚𝐿sb𝑛,𝑟 follows from Theorem 3.7.8 with 𝑓𝑟 ,𝑖 ∶= 2ℎ1,𝑟 ,𝑖,

where the preconditions are met since the time series is piecewise stationary and by
assumption; moreover, (3.7.3) is a consequence of Lemma 3.7.11. We omit the proof of
√
𝑚𝐷sb

𝑛,𝑟 = 𝑜P(1) as the proof is similar to the proof of the respective statement in the
proof of Theorem 3.2.5.
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3.7 Auxiliary results

3.7.1 Disjoint blocks - stationary case

Lemma 3.7.1 (Convergence of 𝜗𝑟 ). Assume Condition 3.1.1 is met. Furthermore suppose that
ℎ is 𝜆𝜆2𝑑-a.e. continuous and that there exists 𝜈 > 0 with lim sup𝑟→∞ ∫ ∫ |ℎ(𝒙, 𝒚)|1+𝜈 dP𝒁𝑟 ,1(𝒙) dP𝒁𝑟 ,1(𝒚) <
∞. Then lim𝑟→∞ 𝜗𝑟 = 𝜗 with 𝜗𝑟 and 𝜗 from (3.2.4) and (3.2.5), respectively.

Proof. We have ℎ(𝒁𝑟 ,1, 𝒁̃𝑟 ,1) ⇝ ℎ(𝒁, 𝒁̃) by independence and the continuous mapping
theorem. The assertion then follows from Example 2.21 in van der Vaart (1998) and the
integrability assumption.

Recall the definition of ℎ1,𝑟 from (3.6.3).

Lemma 3.7.2 (Weak convergence of ℎ1,𝑟(𝒁𝑟 ,1)). Suppose Conditions 3.1.1, 3.2.4(a) hold and
that ℎ is 𝜆𝜆2𝑑-a.e. continuous and bounded on compact sets. Then, for 𝑟 → ∞,

ℎ1,𝑟(𝒁𝑟 ,1)⇝ ℎ1(𝒁).

Moreover, for any 𝑝 < 2 + 𝜈 with 𝑝 ∈ N, we have lim𝑟→∞ E[ℎ𝑝1,𝑟(𝒁𝑟 ,1)] = E[ℎ𝑝1 (𝒁)].

Proof. Since 𝜗𝑟 → 𝜗 by Lemma 3.7.1, we may assume 𝜗𝑟 ≡ 0. We will use Wichura’s
Theorem (Billingsley, 2013, Theorem 4.2). Note that

𝑇𝑟 ∶= ℎ1,𝑟(𝒁𝑟 ,1) = ∫ ℎ(𝒁𝑟 ,1, 𝒚) dP𝒁𝑟 ,1(𝒚), 𝑇 ∶= ℎ1(𝒁) = ∫ ℎ(𝒁, 𝒚) dP𝒁(𝒚)

and define, for 𝐵 ∶= 𝐵(𝑏) ∶= [−𝑏, 𝑏]𝑑 with 𝑏 ∈ N,

𝑇𝑟(𝑏) ∶= ∫
𝐵
ℎ(𝒁𝑟 ,1, 𝒚) dP𝒁𝑟 ,1(𝒚), 𝑇 (𝑏) ∶= ∫

𝐵
ℎ(𝒁, 𝒚) dP𝒁(𝒚).

In order to show weak convergence of 𝑇𝑟(𝑏) to 𝑇 (𝑏) we use the extended contin-
uous mapping theorem (Theorem 1.11.1 in van der Vaart and Wellner (1996)). Let
𝒙𝑟 → 𝒙 ∈ R𝑑 and note that the map (𝒙, 𝒚) ↦ ℎ(𝒙, 𝒚)𝟏

{
𝒚 ∈ 𝐵

}
is P⊗2

𝒁 -a.e. continu-
ous. By the ordinary continuous mapping theorem we obtain weak convergence of
ℎ(𝒙𝑟 , 𝒁𝑟 ,1)𝟏

{
𝒁𝑟 ,1 ∈ 𝐵

}
to ℎ(𝒙, 𝒁)𝟏 {𝒁 ∈ 𝐵} . Next, since there exists a compact set 𝐴 con-

taining (𝒙𝑟)𝑟 , we have

lim sup
𝑟→∞

E[ℎ2(𝒙𝑟 , 𝒁𝑟 ,1) ⋅ 𝟏
{
𝒁𝑟 ,1 ∈ 𝐵

}
] ≤ sup

𝒙∈𝐴,𝒛∈𝐵
ℎ2(𝒙, 𝒛) < ∞,

which in turn implies moment convergence of ℎ(𝒙𝑟 , 𝒁𝑟 ,1)𝟏
{
𝒁𝑟 ,1 ∈ 𝐵

}
. This shows contin-

uous convergence of the mapping sequence 𝒙 ↦ ∫𝐵 ℎ(𝒙, 𝒚) dP𝒁𝑟 ,1(𝒚), and the extended
continuous mapping theorem finally implies weak convergence of 𝑇𝑟(𝑏) to 𝑇 (𝑏) as as-
serted.

Next, we have weak convergence of 𝑇 (𝑏) to 𝑇 , for 𝑏 → ∞. Indeed, with 𝒁̃ an indepen-
dent copy of 𝒁 , we have

E |𝑇 − 𝑇 (𝑏)| ≤ E [|ℎ(𝒁, 𝒁̃)|𝟏{𝒁̃ ∈ 𝐵(𝑏)}] ≤ ‖ℎ(𝒁, 𝒁̃)‖𝐿2(P) ⋅ P(𝒁̃ ∉ 𝐵(𝑏))1/2
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= 𝑜(1)

as 𝑏 → ∞.
We finally verify lim𝑏→∞ lim sup𝑟→∞ P (|𝑇𝑟(𝑏) − 𝑇𝑟 | > 𝜀) = 0 for any fixed 𝜀 > 0. Let 𝒁̃𝑟 ,1

be an independent copy of 𝒁𝑟 ,1. Applying the Markov inequality, we have

P (|𝑇𝑟(𝑏) − 𝑇𝑟 | > 𝜖) ≤ P(∫
𝐵𝑐
|ℎ(𝒁𝑟 ,1, 𝒚)| dP𝒁𝑟 ,1(𝒚) > 𝜀)

≤ 𝜀−1 E[|ℎ(𝒁𝑟 ,1, 𝒁̃𝑟 ,1)|𝟏{𝒁̃𝑟 ,1 ∈ 𝐵(𝑏)𝑐}].

Applying the Cauchy-Schwarz inequality and taking the limit over 𝑟 results in the up-
per bound 𝐶 ⋅ P (𝒁 ∈ 𝐵(𝑏)𝑐)1/2 by the Portmanteau Theorem and Condition 3.2.4 (a), for
a constant 𝐶 not depending on 𝑏. The bound goes to 0 for 𝑏 → ∞ since 𝐵(𝑏)𝑐 ↓ ∅.

Wichura’s theorem implies weak convergence of ℎ1,𝑟(𝒁𝑟 ,1) to ℎ1(𝒁), for 𝑟 → ∞. The
stated convergence of moments follows by Example 2.21 in van der Vaart (1998) using
the Jensen inequality and Condition 3.2.4 (a).

Let 𝓁 = 𝓁𝑛 ∈ N denote the sequence from Condition 3.2.1(b). We may assume that
1 < 𝓁 < 𝑟 . For 𝑗 ∈ N, recall that

𝑴𝑟−𝓁,𝑗 = max(𝑿𝑗 , …𝑿𝑗+𝑟−𝓁−1), 𝒁𝑟−𝓁,𝑗 = (𝑴𝑟−𝓁,𝑗 − 𝒃𝑟−𝓁)/𝒂𝑟−𝓁. (3.7.1)

Lemma 3.7.3 (Weak convergence of clipped blocks). Suppose Conditions 3.1.1 and 3.2.1(a)
and (b) are met. Then, as 𝑛 → ∞,

(𝒁𝑟 ,1, 𝒁𝑟−𝓁,1)⇝ (𝒁, 𝒁).

Proof. Since (𝒁𝑟 ,1, 𝒁𝑟−𝓁,1) = (𝒁𝑟 ,1, 𝒁𝑟 ,1) − (0, 𝒁𝑟−𝓁,1 − 𝒁𝑟 ,1) and since 𝒁𝑟 ,1 converges weakly
to 𝒁 by assumption, it suffices to show that 𝒁𝑟−𝓁,1 − 𝒁𝑟 ,1 = 𝑜P(1). In particular, we may
assume 𝑑 = 1 and note (𝑀𝑟−𝓁,1 − 𝑏𝑟−𝓁)/𝑎𝑟−𝓁 converges weakly to 𝒁 .

Condition 3.1.1 yields local uniform convergence, see the proof of Lemma B.15 in
Bücher and Zanger (2023), hence 𝑎𝑟/𝑎𝑟−𝓁 = 1 + 𝑜(1) and (𝑏𝑟−𝓁 − 𝑏𝑟)/𝑎𝑟 = 𝑜(1). By Lemma
B.15 from Bücher and Zanger (2023) we have, for any 𝜀 > 0,

P (|𝑍𝑟−𝓁,1 − 𝑍𝑟 ,1| ≥ 𝜀) = P (|𝑍𝑟−𝓁,1 − 𝑍𝑟 ,1| ≥ 𝜀,𝑀𝑟−𝓁,1 = 𝑀𝑟 ,1) + 𝑜(1).

Using the convergence of the rescaling sequences and that 𝑍𝑟−𝓁 is stochastically bounded
we have

𝑀𝑟−𝓁,1 − 𝑏𝑟−𝓁
𝑎𝑟−𝓁

−
𝑀𝑟−𝓁,1 − 𝑏𝑟

𝑎𝑟
= 𝑍𝑟−𝓁,1(1 −

𝑎𝑟−𝓁
𝑎𝑟 )−

𝑏𝑟−𝓁 − 𝑏𝑟
𝑎𝑟

= 𝑂P(1)𝑜(1) + 𝑜(1) = 𝑜P(1).

This implies 𝑍𝑟−𝓁,1 − 𝑍𝑟 ,1 = 𝑜P(1).

42



3.7 Auxiliary results

For the next results, let Δ𝑟 ,𝓁(𝑗) ∶= ℎ1,𝑟(𝒁𝑟 ,𝑗 ) − ℎ1,𝑟−𝓁(𝒁𝑟−𝓁,𝑗 ) for 𝑗 ∈ 𝐼 db𝑛 . Furthermore let
(𝑿̃𝑗 , … , 𝑿̃𝑗+𝑟−1)𝑗∈𝐼db𝑛 be i.i.d. copies of (𝑿𝑗 , … , 𝑿𝑗+𝑟−1)𝑗∈𝐼db𝑛 and define 𝑴̃𝑟 ,𝑗 = max(𝑿̃𝑗 , … , 𝑿̃𝑗+𝑟−1)
and 𝒁̃𝑟 ,𝑗 = (𝑴̃𝑟 ,𝑗 − 𝒃𝑟)/𝒂𝑟 and 𝑴̃𝑟−𝓁,𝑗 , 𝒁̃𝑟−𝓁,𝑗 analogously to (3.7.1).

Lemma 3.7.4. Suppose Conditions 3.1.1,3.2.1(a), (b) and 3.2.4(a) are met and that ℎ is 𝜆𝜆2𝑑-a.e.
continuous. Then

lim
𝑛→∞

E [
{ 1
√
𝑚

∑
𝑗∈𝐼db𝑛

Δ𝑟 ,𝓁(𝑗)
}2

] = 0, lim
𝑛→∞

E [
||Δ𝑟 ,𝓁(1)||

𝑝
] = 0

for all 𝑝 ∈ N with 𝑝 < 2 + 𝜈.

Proof. We start by showing the second convergence. Let ‖ ⋅ ‖𝑝 denote the 𝐿𝑝-norm. Writ-
ing Δ𝑟 ,𝓁(1) = ∫ ℎ(𝒁𝑟 ,1, 𝑦1) − ℎ(𝒁𝑟−𝓁,1, 𝑦2) dP𝒁̃𝑟 ,1 ⊗P𝒁̃𝑟−𝓁,1(𝑦1, 𝑦2) + 𝜗𝑟−𝓁 − 𝜗𝑟 , we obtain

‖Δ𝑟 ,𝓁(1)‖𝑝 ≤ ‖ℎ(𝒁𝑟 ,1, 𝒁̃𝑟 ,1) − ℎ(𝒁𝑟−𝓁,1, 𝒁̃𝑟−𝓁,1)‖𝑝 + |𝜗𝑟 − 𝜗𝑟−𝓁| =∶ 𝑟1,𝑛 + 𝑟2,𝑛,

by Jensen’s inequality. Since lim𝑟→∞ 𝜗𝑟 = 𝜗, we have 𝑟2,𝑛 = 𝑜(1) for 𝑛 → ∞. By Lemma
3.7.3 and independence, the vector (𝒁𝑟 ,1, 𝒁𝑟−𝓁,1, 𝒁̃𝑟 ,1, 𝒁̃𝑟−𝓁,1) converges weakly to (𝒁, 𝒁, 𝒁̃, 𝒁̃),
where 𝒁, 𝒁̃ are i.i.d. with cdf 𝐺. Therefore, the continuous mapping theorem yields
|ℎ(𝒁𝑟 ,1, 𝒁̃𝑟 ,1) − ℎ(𝒁𝑟−𝓁,1, 𝒁̃𝑟−𝓁,1)| = 𝑜P(1). By Condition 3.2.4(a) we have asymptotic uniform
integrability of |ℎ(𝒁𝑟 ,1, 𝒁̃𝑟 ,1)|2+𝜈 so that 𝑟1,𝑛 = 𝑜(1) by Example 2.21 in van der Vaart (1998)
and stationarity.

Using stationarity and observing that the Δ𝑟 ,𝓁(𝑗) are centered we have

E [
{ 1
√
𝑚

∑
𝑗∈𝐼db𝑛

Δ𝑟 ,𝓁(𝑗)
}2

]

≤ 3Var(Δ𝑟 ,𝓁(1)) + 2
𝑚−1
∑
𝑠=2

(1 −
𝑠
𝑚
)| Cov(Δ𝑟 ,𝓁(1), Δ𝑟 ,𝓁(1 + 𝑟𝑠))|.

By Lemma 3.11 in Dehling and Philipp (2002), Condition 3.2.4(a) and 3.2.1 (c), there
exists a constant 𝐶 > 0 that is independent of 𝑠 ≥ 2 and 𝑛 such that |Cov(Δ𝑟 ,𝓁(1), Δ𝑟 ,𝓁(1 +
𝑟𝑠))| ≤ 𝐶𝛼(𝑟)𝑣/(2+𝜈). Now 𝛼(𝑟) ≤ 𝛽(𝑟) and Condition 3.2.1 (c) imply that the sum in the
upper display converges to 0. Hence, an application of the second claim of this lemma
implies the first claim and the proof is finished.

Lemma 3.7.5 (Restriction to independent blocks). Suppose Conditions 3.1.1, 3.2.1(a), (b),
and 3.2.4(a) are met, and that ℎ is 𝜆𝜆2𝑑-a.e. continuous. Then 𝑚−1/2∑𝑗∈𝐼db𝑛 ℎ1,𝑟(𝒁𝑟 ,𝑗 ) converges
weakly if and only if 𝑚−1/2∑𝑗∈𝐼db𝑛 ℎ1,𝑟(𝒁̃𝑟 ,𝑗 ) converges weakly. In that case the weak limits coin-
cide.

Proof. The result follows from a standard argument involving characteristic functions
and Lemma 3.7.4; see, for instance, the proof of Theorem 3.6 in Bücher and Segers
(2018b).
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3.7.2 Sliding blocks - stationary case

Recall the definitions of 𝐺𝜉 , 𝐿𝜉 and 𝐶𝜉 from (3.2.8), (3.2.7) and (3.2.6), respectively. Recall
the convention that 𝐿 ∶= id[0,∞] if 𝑑 = 1, which implies 𝐶 = id[0,1]. The following is
a generalization of Lemma B.3 in (the supplementary material to) Bücher and Zanger
(2023) for dimensions 𝑑 ≥ 1.

Lemma 3.7.6. Suppose that Conditions 3.1.1, 3.2.1(a) and (b) are met. Then, for any 𝜉 ≥ 0 and
𝒙, 𝒚 ∈ R𝑑 ,

lim
𝑛→∞

P(𝒁𝑟 ,1 ≤ 𝒙, 𝒁𝑟 ,𝜉𝑟 ≤ 𝒚) = 𝐺𝜉 (𝒙, 𝒚),

where 𝜉𝑟 = 1 + ⌊𝑟𝜉⌋. Furthermore, 𝐺𝜉 is the cdf of a 2𝑑-variate extreme value distribution with
copula 𝐶𝜉 and stable tail dependence function 𝐿𝜉 .

Proof. We only consider the case 𝜉 ∈ [0, 1]; the case 𝜉 > 1 can be treated similarly. By the
same arguments as in the proof of Lemma B.3 in Bücher and Zanger (2023), we obtain
that

lim
𝑛→∞

P(𝒁𝑟 ,1 ≤ 𝒙, 𝒁𝑟 ,𝜉𝑟 ≤ 𝒚)

= 𝐺
(
𝜉−𝛾

(1)
𝑥(1) +

𝜉−𝛾(1) − 1
𝛾(1)

, … , 𝜉−𝛾
(𝑑)
𝑥(𝑑) +

𝜉−𝛾(𝑑) − 1
𝛾(𝑑) )

×𝐺
(
𝜉−𝛾

(1)
𝑦(1) +

𝜉−𝛾(1) − 1
𝛾(1)

, … , 𝜉−𝛾
(𝑑)
𝑦(𝑑) +

𝜉−𝛾(𝑑) − 1
𝛾(𝑑) )

×𝐺
(
(1 − 𝜉)−𝛾

(1)
(𝑥(1) ∧ 𝑦(1)) +

(1 − 𝜉)−𝛾(1) − 1
𝛾(1)

, …

… , (1 − 𝜉)−𝛾
(𝑑)
(𝑥(𝑑) ∧ 𝑦(𝑑)) +

(1 − 𝜉)−𝛾(𝑑) − 1
𝛾(𝑑) )

. (3.7.2)

Since − log𝐺𝛾(𝑥) = (1 + 𝛾𝑥)−1/𝛾 , we may write

𝐺(𝒙) = exp
{
− 𝐿( − (1 + 𝛾(1)𝑥(1))−1/𝛾

(1)
, … , (1 + 𝛾(𝑑)𝑥(𝑑))−1/𝛾

(𝑑)

)
}
,

A straightforward calculation then shows that the expression on the right-hand side of
(3.7.2) can be written as 𝐺𝜉 (𝒙, 𝒚). In particular, 𝐶𝜉 is a copula, which can easily be seen
to be max-stable, i.e., 𝐶𝜉 (𝒖𝑠 , 𝒗𝑠) = 𝐶𝜉 (𝒖, 𝒗)𝑠 for all 𝑠 > 0 and 𝒖, 𝒗 ∈ [0, 1]𝑑 . It is hence an
extreme-value copula with the given stable tail-dependence function 𝐿𝜉 and 𝐺𝜉 is the
cdf of an extreme-value distribution.

Theorem 3.7.7 (CLT for sliding blocks). Suppose that Conditions 3.1.1, 3.2.1(a), (b) are
satisfied and that there exists an 𝜔 > 0 with 𝑚1+𝜔

𝑛 𝛼(𝑟𝑛) → 0. For each 𝑟 = 𝑟𝑛 let 𝑟 = {𝑓𝑟 ,𝑖∶ R𝑑 →
R ∣ 𝑖 ∈ N} be a family of deterministic maps with the following properties:

(i) 𝑓𝑟 ,𝑟+𝑠 = 𝑓𝑟 ,𝑠 for all 𝑠 ∈ N and 𝑟 = 𝑟𝑛 with 𝑛 ∈ N;
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(ii) The random variables 𝑓𝑟 ,𝑖(𝒁𝑟 ,𝑖) are centered for all 𝑖 ∈ N and 𝑟 = 𝑟𝑛 with 𝑛 ∈ N;

(iii) There exists a 𝜈 > 2/𝜔 with lim sup𝑛→∞ sup𝑖∈N E[|𝑓𝑟 ,𝑖(𝒁𝑟 ,𝑖)|2+𝜈] < ∞.

(iv) There exists a map 𝑓 ∶ R𝑑 → R such that for, all 𝜉 ∈ [0, 1], 𝜉 ′ ∈ [0, 2], as 𝑛 → ∞,

(𝑓𝑟 ,𝜉𝑟 (𝒁𝑟 ,𝜉𝑟 ), 𝑓𝑟 ,𝜉 ′𝑟 (𝒁𝑟 ,𝜉 ′𝑟 ))⇝ (𝑓 (𝒁1,|𝜉−𝜉 ′ |), 𝑓 (𝒁2,|𝜉−𝜉 ′ |)) , (3.7.3)

where 𝜉𝑟 = 1 + ⌊𝑟𝜉⌋, 𝜉 ′𝑟 = 1 + ⌊𝑟𝜉 ′⌋ and (𝒁1,|𝜉−𝜉 ′ |, 𝒁2,|𝜉−𝜉 ′ |) ∼ 𝐺|𝜉−𝜉 ′ |.

Then, for 𝑛 → ∞,

√
𝑚
𝑛

𝑛
∑
𝑖=1

𝑓𝑟 ,𝑖(𝒁𝑟 ,𝑖)⇝ (0, 𝜎2𝑓 ), 𝜎2𝑓 ∶= 2 ∫
1

0
Cov(𝑓 (𝒁1,𝜉 ), 𝑓 (𝒁2,𝜉 )) d𝜉.

Proof. The proof is very similar to the one of Theorem 2.6 in Bücher and Segers (2018a).
For completeness, it is carried out in the supplement.

3.7.3 Sliding blocks - non-stationary case

The following theorem is an adaptation of Theorem 3.7.7 to the non-stationary setting
of Section 3.4.

Theorem 3.7.8. Suppose that the sampling scheme from Condition 3.4.1 is met and that the
underlying time-series (𝒀𝑡)𝑡 satisfies Conditions 3.2.1(a), (b) and 𝑚1+𝜔

𝑛 𝛼(𝑟𝑛) → 0 for some 𝜔 > 0.
For each 𝑟 = 𝑟𝑛, let 𝑟 = {𝑓𝑟 ,𝑖∶ R𝑑 → R ∣ 𝑖 ∈ N} be a family of deterministic maps satisfying
Conditions (i) - (iv) of Theorem 3.7.7. Then, for 𝑛 → ∞,

√
𝑚
𝑛

𝑛
∑
𝑖=1

𝑓𝑟 ,𝑖(𝒁𝑟 ,𝑖)⇝ (0, 𝜎2𝑓 ), 𝜎2𝑓 ∶= 2 ∫
1

0
Cov(𝑓 (𝒁1,𝜉 ), 𝑓 (𝒁2,𝜉 )) d𝜉.

Proof. The proof is essentially the same as for Theorem 3.7.7, with the following simple
adaptation: independence of 𝑆+𝑛,1, 𝑆+𝑛,2, ... is a direct consequence of the imposed sampling
scheme.

The following result is an extension of Lemma 2.4 from Bücher and Zanger (2023) to
multivariate time series.

Lemma 3.7.9. Suppose the sampling scheme from Condition 3.4.1 is met. Then, for every 𝜉 ≥ 0
and 𝒙 ∈ R𝑑 ,

lim
𝑛→∞

P(𝒁𝑟 ,𝜉𝑟 ≤ 𝒙) = 𝐺(𝒙),

with 𝐺 from Condition 3.1.1 and with 𝜉𝑟 ∶= 1 + ⌊𝑟𝜉⌋.

Proof. Note first that for univariate 𝑥 ∈ R and 𝑠 > 0, 𝛾 ∈ R we have 𝐺𝛾(𝑥/𝑠𝛾 + (𝑠−𝛾 −
1)/𝛾) = 𝐺𝛾(𝑥)𝑠 . This implies, for 𝒙 ∈ R𝑑 , 𝜸 ∈ R𝑑 ,

𝐺[(
𝑥(𝑖)

𝑠𝛾(𝑖)
+ 𝑠−𝛾(𝑖)−1

𝛾(𝑖) )𝑖=1,…,𝑑]
= 𝐶[(𝐺𝛾(𝑖)(

𝑥(𝑖)

𝑠𝛾(𝑖)
+ 𝑠−𝛾(𝑖)−1

𝛾(𝑖) ))𝑖=1,…,𝑑]
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= 𝐶𝑠[(𝐺𝛾(𝑖)(𝑥
(𝑖)))𝑖=1,…𝑑]

= 𝐺𝑠(𝒙),

by (3.1.3) and (L1) from Condition 3.1.1.
By piecewise stationarity and Condition 3.1.1 it suffices to show the result for 𝜉 ∈

(0, 1). Analogous to the proof of Lemma 2.4 from Bücher and Zanger (2023) we have

lim
𝑟→∞

P(𝒁𝑟 ,𝜉𝑟 ≤ 𝒙)

= 𝐺[(
𝑥(𝑖)

(1−𝜉)𝛾(𝑖)
+ (1−𝜉)−𝛾(𝑖)−1

𝛾(𝑖) )𝑖=1,…,𝑑]
⋅ 𝐺[(

𝑥(𝑖)

𝜉 𝛾(𝑖)
+ 𝜉−𝛾(𝑖)−1

𝛾(𝑖) )𝑖=1,…,𝑑]

= 𝐺(𝒙),

where the last equality follows from the identity in the previous display.

Lemma 3.7.10. Suppose the sampling scheme from Condition 3.4.1 is met and that the un-
derlying time series (𝒀𝑡)𝑡 satisfies Conditions 3.2.1(a) and (b). Then, for any 𝜉 , 𝜉 ′ ≥ 0 and
𝒙, 𝒚 ∈ R𝑑 ,

lim
𝑛→∞

P(𝒁𝑟 ,𝜉𝑟 ≤ 𝒙, 𝒁𝑟 ,𝜉 ′𝑟 ≤ 𝒚) = 𝐺|𝜉−𝜉 ′ |(𝒙, 𝒚).

Proof. This is a slight adaption of the proof of Lemma 3.7.6 using standard clipping
techniques and Lemma 3.7.9.

Lemma 3.7.11. Suppose the sampling scheme from Condition 3.4.1 is met and that the un-
derlying time series (𝒀𝑡)𝑡 satisfies Conditions 3.2.1(a) and (b). Furthermore, let ℎ be 𝜆𝜆2𝑑-a.e.
continuous and bounded on compact sets and suppose that Condition 3.4.2(a) is met. Then, for
𝜉 , 𝜉 ′ ∈ [0,∞)

(ℎ1,𝑟 ,𝜉𝑟 (𝒁𝑟 ,𝜉𝑟 ), ℎ1,𝑟 ,𝜉 ′𝑟 (𝒁𝑟 ,𝜉 ′𝑟 ))⇝ (ℎ1(𝒁1,|𝜉−𝜉 ′ |), ℎ1(𝒁2,|𝜉−𝜉 ′ |))

and marginal moments of order 𝑝 < 2 + 𝜈, with 𝑝 ∈ N, converge.

Proof. We proceed similar as in the proof of Lemma 3.7.2 and employ the Cramér-Wold
Theorem and Wichura’s Theorem. Fix 𝒂 = (𝑎(1), 𝑎(2)) ∈ R2 ⧵ {𝟎} and let

𝑇𝑛 ∶= 𝑎(1)ℎ1,𝑟 ,𝜉𝑟 (𝒁𝑟 ,𝜉𝑟 ) + 𝑎
(2)ℎ1,𝑟 ,𝜉 ′𝑟 (𝒁𝑟 ,𝜉 ′𝑟 )

= ∫ 𝑎(1)ℎ(𝒁𝑟 ,𝜉𝑟 , 𝒚1) + 𝑎
(2)ℎ(𝒁𝑟 ,𝜉 ′𝑟 , 𝒚2) dP𝒁𝑟 ,𝜉𝑟 ⊗P𝒁𝑟 ,𝜉′𝑟

(𝒚1, 𝒚2),

𝑇 ∶= 𝑎(1)ℎ1(𝒁1,|𝜉−𝜉 ′ |) + 𝑎(2)ℎ1(𝒁2,|𝜉−𝜉 ′ |)

= ∫ 𝑎(1)ℎ(𝒁1,|𝜉−𝜉 ′ |, 𝒚1) + 𝑎(2)ℎ(𝒁2,|𝜉−𝜉 ′ |, 𝒚2) dP⊗2
𝒁 (𝒚1, 𝒚2)

and define, for 𝐵 ∶= 𝐵(𝑏) ∶= [−𝑏, 𝑏]𝑑 with 𝑏 ∈ N,

𝑇𝑛(𝑏) ∶= ∫
𝐵×𝐵

𝑎(1)ℎ(𝒁𝑟 ,𝜉𝑟 , 𝒚1) + 𝑎
(2)ℎ(𝒁𝑟 ,𝜉 ′𝑟 , 𝒚2) dP𝒁𝑟 ,𝜉𝑟 ⊗P𝒁𝑟 ,𝜉′𝑟

(𝒚1, 𝒚2),

𝑇 (𝑏) ∶= ∫
𝐵×𝐵

𝑎(1)ℎ(𝒁1,|𝜉−𝜉 ′ |, 𝒚1) + 𝑎(2)ℎ(𝒁2,|𝜉−𝜉 ′ |, 𝒚2) dP⊗2
𝒁 (𝒚1, 𝒚2).

We may now proceed analogous to the proof of Lemma 3.7.2, where we use the ex-
tended continuous mapping theorem and the weak convergence from Lemma 3.7.10 to
show that 𝑇𝑛(𝑏)⇝ 𝑇 (𝑏) for 𝑛 → ∞.
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3.8 Supplement

In Section 3.8.1, we provide the proof of Theorem 3.7.7 from the main pa-
per. In Section 3.8.2, we provide an extension of Theorem 3.2.5 to strong
mixing. In Section 3.8.3, we provide explicit formulas for some asymptotic
variances from Section 3.3 in the main paper. In Section 3.8.4, we provide
some additional simulation results on the bias-corrected sliding blocks esti-
mator.

3.8.1 Remaining proofs

Proof of Theorem 3.7.7. The proof is similar to the one of Theorem 2.6 in Bücher and
Segers (2018a). For 𝑗 ∈ {1, … , 𝑚}, let 𝐼𝑗 ∶= {(𝑗 − 1)𝑟 + 1, … , 𝑗𝑟}. Choose 𝑚∗ = 𝑚∗

𝑛 ∈ N

with 3 ≤ 𝑚∗ ≤ 𝑚 such that 𝑚∗ → ∞ and 𝑚∗ = 𝑜(𝑚𝜈/(2(1+𝜈))). Next, define 𝑞 ∶= 𝑞𝑛 ∶= 𝑚/𝑚∗

and assume without loss of generality that 𝑞 ∈ N, 𝑛/𝑟 ∈ N. For 𝑗 ∈ N define 𝐽+𝑗 ∶=
𝐼(𝑗−1)𝑚∗+1 ∪ … ∪ 𝐼𝑗𝑚∗−2 as the index set making up the big blocks, and 𝐽−𝑗 ∶= 𝐼𝑗𝑚∗−1 ∪ 𝐼𝑗𝑚∗ as
the index set making up the small blocks. Note that #𝐽+𝑗 = (𝑚∗ − 2)𝑟 and #𝐽−𝑗 = 2𝑟. The
previous definitions allow to rewrite

√
𝑚
𝑛

𝑛
∑
𝑖=1

𝑓𝑟 ,𝑖(𝒁𝑟 ,𝑖) =
1
√𝑞

𝑞

∑
𝑗=1

(𝑆+𝑛,𝑗 + 𝑆
−
𝑛,𝑗 ), (3.8.1)

where 𝑆+𝑛,𝑗 ∶=
√
𝑞/(𝑛𝑟)∑𝑠∈𝐽+𝑗 𝑓𝑟 ,𝑠(𝒁𝑟 ,𝑠) and 𝑆−𝑛,𝑗 ∶=

√
𝑞/(𝑛𝑟)∑𝑠∈𝐽−𝑗 𝑓𝑟 ,𝑠(𝒁𝑟 ,𝑠).

Note that the random variables (𝑆±𝑛,𝑗 )𝑗 are stationary by (i). Hence, by (ii)

Var (
1
√𝑞

𝑞

∑
𝑗=1

𝑆−𝑛,𝑗) =
1
𝑞

𝑞

∑
𝑗=1

Var(𝑆−𝑛,𝑗 ) +
2
𝑞

∑
1≤𝑖<𝑗≤𝑞

Cov(𝑆−𝑛,𝑖, 𝑆
−
𝑛,𝑗 )

≤ 3Var(𝑆−𝑛,1) + 2
𝑞−1

∑
𝑘=2

| Cov(𝑆−𝑛,1, 𝑆
−
𝑛,1+𝑘)| =∶ 𝑅𝑛1 + 𝑅𝑛2.

Properties (ii), (iii) and the definition of 𝑚∗ and 𝑞 yield

(
𝑅𝑛1
3 )

1/2

≤
√

𝑞
𝑛𝑟

∑
𝑠∈𝐽−1

‖𝑓𝑟 ,𝑠(𝒁𝑟 ,𝑠)‖2 = 𝑂(

√
1
𝑚∗) = 𝑜(1).

For 𝑅𝑛,2 note that by property (iii) and Lemma 3.11 from Dehling and Philipp (2002)
we have that sup𝑘≥2 | Cov(𝑆−𝑛,1, 𝑆−𝑛,1+𝑘)| ≲ (𝑚∗)−1𝛼(𝑟)𝜈/(2+𝜈). Since 𝑚∗ ≥ 3 we obtain 𝑅𝑛,2 ≲
𝑚(𝑚∗)−2𝛼(𝑟)𝜈/(2+𝜈) = 𝑜(1) by assumption. Therefore, in view of E[𝑆−𝑛,𝑗 ] = 0 for all 𝑗 by (ii),
we obtain 𝑞−1/2∑𝑞

𝑗=1 𝑆−𝑛,𝑗 = 𝑜P(1).
Concerning the sum over 𝑆+𝑛,𝑗 note that we may assume that 𝑆+𝑛,1, 𝑆+𝑛,2, … are indepen-

dent by arguing as in the proof of Lemma 3.7.5, since there is a lag of 𝑟 between any two
big blocks. Hence, we may subsequently apply Ljapunov’s central limit theorem.

We will show below that

lim
𝑛→∞

𝜎2𝑛 = 𝜎2𝑓 , 𝜎2𝑛 ∶= Var (

√
𝑚
𝑛

𝑛
∑
𝑖=1

𝑓𝑟 ,𝑖 (𝒁𝑟 ,𝑖) ). (3.8.2)
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If 𝜎2𝑓 = 0, we immediately obtain the assertion. If 𝜎2𝑓 > 0, we obtain

Var (

𝑞

∑
𝑗=1

𝑆+𝑛,𝑗) = 𝑞
{
Var (

√
𝑚
𝑛

𝑛
∑
𝑖=1

𝑓𝑟 ,𝑖(𝒁𝑟 ,𝑖)) + 𝑜(1)
}
= 𝑞{𝜎2𝑓 + 𝑜(1)},

where the 𝑜 term is due to (3.8.1) and Var(𝑚−1/2∑𝑞
𝑗=1 𝑆−𝑛,𝑗 ) = 𝑜(1). Moreover, by property

(iii), we have sup𝑗∈N E[|𝑆+𝑛,𝑗 |2+𝜈] = 𝑂((𝑚∗)1+𝜈/2). As a consequence,

∑𝑞
𝑗=1 E[|𝑆+𝑛,𝑗 |2+𝜈]

{Var(∑𝑞
𝑗=1 𝑆+𝑛,𝑗 )}1+𝜈/2

≲
𝑞(𝑚∗)1+𝜈/2

(𝑞(𝜎2𝑓 + 𝑜(1)))1+𝜈/2
≲

(𝑚∗)1+𝜈

𝑚𝑣/2 = 𝑜(1)

by choice of 𝑚∗. Ljapunvov’s central limit theorem implies the assertion.
It remains to prove (3.8.2). For 𝑘 ∈ {1, … ,𝑚}, let 𝐴𝑘 ∶= ∑𝑠∈𝐼𝑘 𝑓𝑟 ,𝑠(𝒁𝑟 ,𝑠) and note that

∑𝑛
𝑖=1 𝑓𝑟 ,𝑖(𝒁𝑟 ,𝑖) = ∑𝑚

𝑘=1 𝐴𝑘. Here, Assumption (i) implies stationarity of (𝐴𝑘)𝑘, whence

𝜎2𝑛 =
1
𝑛𝑟

Var (
𝑚
∑
𝑘=1

𝐴𝑘) =
𝑚
𝑛𝑟
{Var(𝐴1) + 2 Cov(𝐴1, 𝐴2)} +

𝑅𝑛
𝑛𝑟
,

where 𝑅𝑛 ∶= −2Cov(𝐴1, 𝐴2) + 2∑𝑚−1
𝑘=2 (𝑚 − 𝑘) Cov(𝐴1, 𝐴1+𝑘). Lemma 3.11 in Dehling and

Philipp (2002), together with Assumptions (ii) and (iii), implies that

1
𝑛𝑟
|𝑅𝑛| ≲

𝑟2

𝑛𝑟
+
𝑚2𝑟2

𝑛𝑟
𝛼

𝜈
2+𝜈 (𝑟) ≲

1
𝑚

+ (𝑚1+2/𝜈𝛼(𝑟))
𝜈/(2+𝜈)

= 𝑜(1),

by assumption. Hence 𝜎2𝑛 = 𝑟−2{Var(𝐴1) + 2Cov(𝐴1, 𝐴2)} + 𝑜(1). Define, for 𝜉 , 𝜉 ′ ≥ 0,

𝑔𝑛(𝜉 , 𝜉 ′) ∶= Cov (𝑓𝑟 ,𝜉𝑟 (𝒁𝑟 ,𝜉𝑟 ), 𝑓𝑟 ,𝜉 ′𝑟 (𝒁𝑟 ,𝜉 ′𝑟 )),

and note that, by (3.7.3), Assumption (iii) and the continuous mapping theorem,

lim
𝑛→∞

𝑔𝑛(𝜉 , 𝜉 ′) = 𝑔(𝜉, 𝜉 ′) ∶= Cov (𝑓 (𝒁1,|𝜉−𝜉 ′ |), 𝑓 (𝒁2,|𝜉−𝜉 ′ |)).

The dominated convergence theorem implies

Var(𝐴1)
𝑟2

= ∫
1

0
∫

1

0
𝑔𝑛(𝜉 , 𝜉 ′) d𝜉 d𝜉 ′ → ∫

1

0
∫

1

0
𝑔(𝜉, 𝜉 ′) d𝜉 d𝜉 ′,

as by (ii) and (iii) 𝑔𝑛(𝜉 , 𝜉 ′) may be bounded uniformly in 𝑛, 𝜉 , 𝜉 ′. Similarly, we obtain
𝑟−2 Cov(𝐴1, 𝐴2) → ∫ 10 ∫

2
1 𝑔(𝜉, 𝜉

′) d𝜉 d𝜉 ′. We may finally proceed as in the proof of Lemma
B.9 in the supplement of Bücher and Zanger (2023) to obtain lim𝑛 𝜎2𝑛 = 𝜎2𝑓 .

3.8.2 Limit results under strong mixing

The proof of Theorem 3.2.5 strongly relies on Berbee’s coupling Lemma, which is a
coupling result for beta-mixing time series (Berbee, 1979). In the case of strong mixing,
there is generally no similar coupling result that yields equality between the original
and the coupling variables with high probability (Dehling, 1983). To the best of our
knowledge, the strongest comparable result for alpha-mixing is due to Bradley (1983),
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which yields a coupling with a small 𝐿1-distance. When deriving respective asymptotic
results for U-statistics, Bradley’s coupling construction makes it necessary to impose
additional continuity assumptions on the kernel. Subsequently, we closely follow the
concept of P-Lipschitz continuity from Borovkova et al. (2001) which has been applied
to U-statistics in the strongly mixing case in Dehling and Wendler (2010a).

As common kernels with multivariate arguments do not satisfy the following regu-
larity conditions, we will for reasons of simplicity assume 𝑑 = 1.

Condition 3.8.1 (Regularity of the kernel function). There exists a non-negative func-
tion 𝑔 ∶ R3 → [0,∞) that is 𝜆𝜆3-almost everywhere continuous and a 𝜅 > 1 such that the
following two conditions are met:

(a) For all (𝑥1, 𝑥2, 𝑦) ∈ R3, we have

|ℎ(𝑥1, 𝑦) − ℎ(𝑥2, 𝑦)| ≤ |𝑥1 − 𝑥2|𝑔(𝑥1, 𝑥2, 𝑦).

(b) With 𝑟 ∶= {(𝑌1, 𝑌2, 𝑌3)∶ ∀𝑗 ∈ {1, 2, 3} ∃𝑖𝑗 ∈ N ∶ P𝑌𝑗 = P𝑍𝑟 ,𝑖𝑗 }, where the 𝑌𝑖 are random
variables, we have

lim sup
𝑟→∞

sup
(𝑌1,𝑌2,𝑌3)∈𝑟

E[𝑔𝜅(𝑌1, 𝑌2, 𝑌3)] < ∞.

The uniform integrability condition from Condition 3.2.4 must be strengthened as
follows.

Condition 3.8.2 (Asymptotic integrability). There exist 𝜈, 𝜌 > 0 with 𝜈 > 1/(𝜅 − 1) − 1
and with 𝜅 from Condition 3.8.1 such that Conditions 3.2.4(a), (b) hold and

lim sup
𝑟→∞

E[|𝑍𝑟 ,1|𝜌] < ∞. (3.8.3)

In specific applications, Conditions 3.2.4(a), (b) may often be deduced from moment
constraints as in (3.8.3). Hence, Condition 3.8.2 is not substantially stronger than Con-
dition 3.2.4. Next, as we weaken the mixing requirements from absolute regularity to
strong mixing we need the following stronger assumptions on the mixing rates.

Condition 3.8.3 (Block size and serial dependence). The block size sequence (𝑟𝑛)𝑛 satis-
fies Conditions 3.2.1(a) and (b). Moreover, (𝑛/𝑟𝑛)3/2+2/𝜈+1/(2𝜌)+1/(𝜌𝜈)𝛼(𝑟𝑛) = 𝑜(1), where 𝜌
and 𝜈 are from Condition 3.8.2.

Finally, recalling the definitions of 𝑈mb
𝑛,𝑟 in (3.1.4), of 𝜃𝑟 in (3.1.5), of 𝜎2mb in (3.2.9) and

of 𝜗̃𝑟 in (3.2.11), we have the following result.

Theorem 3.8.4. Suppose Conditions 3.2.2, 3.8.1, 3.8.2 and 3.8.3 are met. Furthermore, let ℎ
be 𝜆𝜆2𝑑-a.e. continuous and bounded on compact sets. Then, for mb ∈ {db, sb},

√
𝑚

𝑓 (𝑎𝑟 , 𝑏𝑟)
⋅ (𝑈mb

𝑛,𝑟 − 𝜃𝑟) ⟶𝑑  (0, 𝜎2mb).

If, additionally, the limit 𝐵 = lim𝑛→∞ 𝐵𝑛 with 𝐵𝑛 from (3.2.12) exists, then
√
𝑚

𝑓 (𝑎𝑟 , 𝑏𝑟)
⋅ (𝑈mb

𝑛,𝑟 − 𝜗̃𝑟)⟶𝑑  (𝐵, 𝜎2mb).
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Proof of Theorem 3.8.4. We use the same Hoeffding decompositon as in the proof of The-
orem 3.2.5; see the algebraic identity (3.6.4). Since the proof of the asymptotic normality
of 𝐿mb

𝑛 does not make use Condition 3.2.1(c), the proof also applies in the current setting
for 𝛼-mixing. Moreover, for the disjoint blocks case, it is sufficient to show (3.6.6). By
the same arguments as in the mentioned proof we may restrict attention to the sum
over the indices from 𝑛,db = {(𝒊, 𝒋) ∈ 𝐽 db𝑛 × 𝐽 db𝑛 ∶ min(𝑖2 − 𝑖1, 𝑗1 − 𝑖1) > 2𝑟}. By Condition
3.8.2 and Theorem 3 in Bradley (1983), after enlarging the probability space if necessary,
there exist, for any (𝒊, 𝒋) ∈ 𝑛,db, random variables 𝑍∗

𝑟,𝑖1 with the following properties:
(i) 𝑍∗

𝑟,𝑖1 is independent of (𝑍𝑟 ,𝑖2 , 𝑍𝑟 ,𝑗1 , 𝑍𝑟 ,𝑗2),
(ii) 𝑍𝑟 ,𝑖1 and 𝑍∗

𝑟,𝑖1 have the same distributions,
(iii) ∀𝜀 > 0: P(|𝑍𝑟 ,𝑖1 − 𝑍∗

𝑟,𝑖1 | ≥ 𝜀) ≤ 𝐾𝛼2𝜌/(2𝜌+1)(𝑟)/𝜀𝜌/(2𝜌+1)

where the constant 𝐾 does not depend on (𝒊, 𝒋) ∈ 𝑛,db. By the same arguments as in the
proof of Theorem 3.2.5 we have, for any 𝜀 > 0,

E [ℎ2,𝑟(𝑍𝑟 ,𝑖1 , 𝑍𝑟 ,𝑖2)ℎ2,𝑟(𝑍𝑟 ,𝑗1 , 𝑍𝑟 ,𝑗2)]
= E [

{
ℎ2,𝑟(𝑍𝑟 ,𝑖1 , 𝑍𝑟 ,𝑖2) − ℎ2,𝑟(𝑍

∗
𝑟,𝑖1 , 𝑍𝑟 ,𝑖2)

}
ℎ2,𝑟(𝑍𝑟 ,𝑗1 , 𝑍𝑟 ,𝑗2)]

= E [
{
ℎ2,𝑟(𝑍𝑟 ,𝑖1 , 𝑍𝑟 ,𝑖2) − ℎ2,𝑟(𝑍

∗
𝑟,𝑖1 , 𝑍𝑟 ,𝑖2)

}

× ℎ2,𝑟(𝑍𝑟 ,𝑗1 , 𝑍𝑟 ,𝑗2)𝟏{|𝑍𝑟 ,𝑖1 − 𝑍
∗
𝑟,𝑖1 | < 𝜀}]

+ E [
{
ℎ2,𝑟(𝑍𝑟 ,𝑖1 , 𝑍𝑟 ,𝑖2) − ℎ2,𝑟(𝑍

∗
𝑟,𝑖1 , 𝑍𝑟 ,𝑖2)

}

× ℎ2,𝑟(𝑍𝑟 ,𝑗1 , 𝑍𝑟 ,𝑗2)𝟏{|𝑍𝑟 ,𝑖1 − 𝑍
∗
𝑟,𝑖1 | ≥ 𝜀}]

≡ 𝑅1,𝑛 + 𝑅2,𝑛. (3.8.4)

Note that

ℎ2,𝑟(𝑍𝑟 ,𝑖1 , 𝑍𝑟 ,𝑖2) − ℎ2,𝑟(𝑍
∗
𝑟,𝑖1 , 𝑍𝑟 ,𝑖2)

= ℎ(𝑍𝑟 ,𝑖1 , 𝑍𝑟 ,𝑖2) − ℎ(𝑍
∗
𝑟,𝑖1 , 𝑍𝑟 ,𝑖2) + ∫ ℎ(𝑍𝑟 ,𝑖1 , 𝑦) − ℎ(𝑍

∗
𝑟,𝑖1 , 𝑦) dP𝑍𝑟 ,1(𝑦),

and apply Hölder’s inequality with 𝑝 = 1 + 1/(1 + 𝜈) < 𝜅, 𝑞 = 2 + 𝜈 to obtain

|𝑅1,𝑛| ≤ 𝜀 E [
{
𝑔(𝑍𝑟 ,𝑖1 , 𝑍

∗
𝑟,𝑖1 , 𝑍𝑟 ,𝑖2) + ∫ 𝑔(𝑍𝑟 ,𝑖1 , 𝑍

∗
𝑟,𝑖1 , 𝑦) dP𝑍𝑟 ,1(𝑦)

}

× |||ℎ2,𝑟(𝑍𝑟 ,𝑗1 , 𝑍𝑟 ,𝑗2)
|||] ≲ 𝜀, (3.8.5)

by Condition 3.8.1(a), (b) and Condition 3.8.2. Next, another application of Hölder’s
inequality with 𝑝 = (2 + 𝜈)/2, 𝑞 = (2 + 𝜈)/𝜈 yields

|𝑅2,𝑛| ≲ P (|𝑍𝑟 ,𝑖1 − 𝑍
∗
𝑟,𝑖1 | ≥ 𝜀)

𝜈/(2+𝜈)
≲

𝛼2𝜇(𝑟)
𝜀𝜇

, (3.8.6)

where 𝜇 = 𝜌𝜈/{(2𝜌 + 1)(𝜈 + 2)}. Setting 𝜀 = 𝛼2𝜇/(𝜇+1)(𝑟), we have, by (3.8.4), (3.8.5) and
(3.8.6),

| E[ℎ2,𝑟(𝑍𝑟 ,𝑖1 , 𝑍𝑟 ,𝑖2)ℎ2,𝑟(𝑍𝑟 ,𝑗1 , 𝑍𝑟 ,𝑗2)]| ≲ 𝛼2𝜇/(𝜇+1)(𝑟) + 𝛼2𝜇−2𝜇
2/(𝜇+1)(𝑟)
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= 2𝛼(2𝜌𝜈)/(3𝜌𝜈+4𝜌+𝜈+2)(𝑟),

uniformly in 𝒊, 𝒋. Hence, we obtain by Condition 3.8.3

𝑚
𝑛4db

∑
(𝒊,𝒋)∈𝑛,db

|| E[ℎ2,𝑟(𝒁𝑟 ,𝑖1 , 𝒁𝑟 ,𝑖2)ℎ2,𝑟(𝒁𝑟 ,𝑗1 , 𝒁𝑟 ,𝑗2)]||

≲ 𝑚𝛼(2𝜌𝜈)/(3𝜌𝜈+4𝜌+𝜈+2)(𝑟)

= (𝑚3/2+2/𝜈+1/(2𝜌)+1/(𝜌𝜈)𝛼(𝑟))
(2𝜌𝜈)/(3𝜌𝜈+4𝜌+𝜈+2) = 𝑜(1),

as #𝑛,db = 𝑂(𝑚4).
The sliding blocks version can be treated similarly, see also the proof of Theorem

3.2.5.
Finally, the statements concerning centering at 𝜗̃𝑟 follow by the same arguments as in

the proof of Corollary 3.2.6.

3.8.3 Formulas for the asymptotic variances in Section 3.3.1

Write 𝑔𝑗 ∶= Γ(1 − 𝑗𝛾) for 𝛾 < 1/𝑗, 𝑗 ∈ N and let 𝜁 (3) denote Apery’s constant.

Lemma 3.8.5. Let 𝛾 < 1/4. The asymptotic variances in Corollary 3.3.1 can be written as

𝜎2db =
⎧⎪⎪
⎨⎪⎪⎩

4
𝛾4 (𝑔4 − 4𝑔1𝑔3 − 𝑔22 + 8𝑔21𝑔2 − 4𝑔41) , 𝛾 ≠ 0
22
45𝜋

4, 𝛾 = 0
(3.8.7)

and

𝜎2sb =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

2
3𝛾3 (−3𝑔4𝐼2,2 + 8𝑔1𝑔3𝐼2,1 − 6𝑔21𝑔2𝐼1,1) , 𝛾 > 0
8
𝛾2 (Γ(−4𝛾)𝐼2,2 − 2𝑔1Γ(−3𝛾)𝐼2,1 + 𝑔21Γ(−2𝛾)𝐼1,1) , 𝛾 < 0

2𝜁 (3) − 48 − 8
3𝜋

2 + 32
3 log3(2) − 48 log2(2) + 96 log(2) + 16

3 𝜋
2 log(2), 𝛾 = 0

, (3.8.8)

where

𝐼𝑖,𝑘 ∶= ∫
1/2

0
(𝛼(𝑗+𝑘)𝛾(𝑤) − 1)

{
𝑤−𝑗𝛾−1(1 − 𝑤)−𝑘𝛾−1 +𝑤−𝑘𝛾−1(1 − 𝑤)−𝑗𝛾−1

}
d𝑤 (3.8.9)

and

𝛼𝛽 ∶ (0, 1) → (0,∞), 𝑤 ↦ 𝛼𝛽(𝑤) =
⎧⎪⎪
⎨⎪⎪⎩

1−(1−𝑤)𝛽+1
𝑤(𝛽+1) , 𝛽 ≠ −1

− 𝑙𝑜𝑔(1−𝑤)
𝑤 , 𝛽 = −1

.

Proof. Recall the definition of ℎ1 from (3.2.10). We have ℎ1(𝑧) = 𝑧2/2 − 𝜇1𝑧 + 𝜇2/2 for
the variance kernel ℎ(𝑥, 𝑦) = (𝑥 − 𝑦)2/2, where 𝜇𝑗 denotes the 𝑗-th moment of a GEV(𝛾)
distribution.

Disjoint case: Using 𝜎2db = 4Var(ℎ1(𝑍)) yields

𝜎2db = 𝜇4 − 𝜇22 + 4𝜇1 (−𝜇31 + 2𝜇1𝜇2 − 𝜇3) . (3.8.10)
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The first four moments of a GEV(𝛾) distributed random variable are given by

𝜇1 =
𝑔1 − 1
𝛾

, 𝜇2 =
𝑔2 − 2𝑔1 + 1

𝛾2
,

𝜇3 =
𝑔3 − 3𝑔2 + 3𝑔1 + 1

𝛾3
, 𝜇4 =

𝑔4 − 4𝑔3 + 6𝑔2 − 4𝑔1 + 1
𝛾4

.

Plugging these into (3.8.10) gives the result for 𝛾 ≠ 0. The case 𝛾 = 0 is similarly easy
and hence omitted.

Sliding case: Let 𝐶𝜉 = Cov(ℎ1(𝑍1,𝜉 ), ℎ1(𝑍2,𝜉 )). First we will consider 𝛾 ≠ 0.A short calcula-
tion using the transformation 𝑆𝑖,𝜉 = (1+𝛾𝑍𝑖,𝜉 )−1/𝛾 gives 𝐶𝜉 = 1/4𝛾4 (𝐶𝜉 ,2,2 − 4𝑔1𝐶𝜉 ,2,1 + 4𝑔21𝐶𝜉 ,1,1) ,
where 𝐶𝜉 ,𝑗 ,𝑘 ∶= Cov(𝑆−𝑗𝛾1,𝜉 , 𝑆

−𝑘𝛾
2,𝜉 ) and hence

𝜎2sb =
2
𝛾4 ∫

1

0
(𝐶𝜉 ,2,2 − 4𝑔1𝐶𝜉 ,2,1 + 4𝑔21𝐶𝜉 ,1,1 d𝜉. (3.8.11)

Hoeffding’s Lemma will be employed to calculate 𝐶𝜉 ,𝑗 ,𝑘 , thus we need to derive the
difference of the joint and product c.d.f.s: To this end use the explicit form of 𝐺𝜉 for
univariate random variables, see e.g. equation (13) in Bücher and Zanger (2023),

𝐺𝜉 (𝑥, 𝑦) = exp [−
{
𝜉(1 + 𝛾𝑥)−

1
𝛾 + 𝜉(1 + 𝛾𝑦)−

1
𝛾 + (1 − 𝜉)(1 + 𝛾(𝑥 ∧ 𝑦))−

1
𝛾

}
]

for 𝜉 ∈ [0, 1] and 𝐺𝜉 (𝑥, 𝑦) = 𝐺𝛾(𝑥)𝐺𝛾(𝑦) for 𝜉 > 1 to obtain

P(𝑆1,𝜉 ≤ 𝑠, 𝑆2,𝜉 ≤ 𝑡) = 1 − 𝑒−𝑠 − 𝑒−𝑡 + 𝑒−(𝑠+𝑡)𝐴𝜉 (
𝑡
𝑡+𝑠 ), 𝑠, 𝑡 > 0,

where 𝐴𝜉 (𝑤) = 𝜉 + (1 − 𝜉){𝑤 ∨ (1 − 𝑤)}. These lead to

P(𝑆
−𝑗𝛾
1,𝜉 ≤ 𝑠, 𝑆−𝑘𝛾2,𝜉 ≤ 𝑡) − P(𝑆

−𝑗𝛾
1,𝜉 ≤ 𝑠)P(𝑆

−𝑘𝛾
2,𝜉 ≤ 𝑡)

= exp
[
(𝑠−

1
𝑗𝛾 + 𝑡−

1
𝑘𝛾 )𝐴𝜉 (

𝑡−
1
𝑘𝛾

𝑠−
1
𝑗𝛾 + 𝑡−

1
𝑘𝛾 )]

− exp [−(𝑠
− 1
𝑗𝛾 + 𝑡−

1
𝑘𝛾
)] ,

for 𝑠, 𝑡 > 0, 𝑗 , 𝑘 ∈ {1, 2}. Now by Hoeffding’s Lemma:

𝐶𝜉 ,𝑗 ,𝑘

= ∫
∞

0
∫

∞

0
exp

[
(𝑠−

1
𝑗𝛾 + 𝑡−

1
𝑘𝛾 )𝐴𝜉 (

𝑡−
1
𝑘𝛾

𝑠−
1
𝑗𝛾 + 𝑡−

1
𝑘𝛾 )]

− exp [−(𝑠
− 1
𝑗𝛾 + 𝑡−

1
𝑘𝛾
)] d𝑠 d𝑡.

Using the substitutions 𝑢 = 𝑠−
1
𝑗𝛾 + 𝑡−

1
𝑘𝛾 , 𝑤 = 𝑡−

1
𝑘𝛾 /(𝑠−1/(𝑗𝛾) + 𝑡−1/(𝑘𝛾)) we get

𝐶𝜉 ,𝑗 ,𝑘 = 𝑗𝑘𝛾2 ∫
1

0
∫

∞

0
(e−𝑢𝐴𝜉 (𝑤) − e−𝑢) 𝑢−(𝑗+𝑘)𝛾−1(1 − 𝑤)−𝑗𝛾−1𝑤−𝑘𝛾−1 d𝑢 d𝑤 (3.8.12)

Distinguish cases, first let 𝛾 < 0. Use the fact that

∫
∞

0
(e−𝑧𝑡 − e−𝑢) 𝑢−𝛽−1 d𝑢 = Γ(−𝛽) (𝑧𝛽 − 1) , 𝑧 > 0, 𝛽 < 0
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to obtain

𝐶𝜉 ,𝑗 ,𝑘 = 𝑗𝑘𝛾2 ∫
1

0
Γ(−(𝑗 + 𝑘)𝛾) (𝐴

(𝑗+𝑘)𝛾
𝜉 − 1) (1 − 𝑤)−𝑗𝛾−1𝑤−𝑘𝛾−1 d𝑤. (3.8.13)

Note 𝐴𝜉 (𝑤) = 𝐴𝜉 (1 − 𝑤) for 𝑤 ∈ (0, 1) and recall the definition of 𝛼𝛽(𝑤). For 𝑤 ∈ (0, 1) and
𝛽 > 0 it then follows ∫ 10 (𝜉𝑤 + 1 − 𝑤)𝛽 d𝜉 = 𝛼𝛽(𝑤). This in conjunction with the symmetry
of 𝐴𝜉 and (3.8.13) yields

∫
1

0
𝐶𝜉 ,𝑗 ,𝑘 d𝜉

= 𝑗𝑘𝛾2Γ(−(𝑗 + 𝑘)𝛾) ∫
1/2

0
(𝛼(𝑗+𝑘)𝛾(𝑤) − 1)

{
𝑤−𝑗𝛾−1(1 − 𝑤)−𝑘𝛾−1

+𝑤−𝑘𝛾−1(1 − 𝑤)−𝑗𝛾−1
}
d𝑤.

(3.8.14)

Recall the definition of 𝐼𝑗 ,𝑘 in (3.8.9) and use (3.8.11) to obtain

𝜎2sb =
8
𝛾2 (

Γ(−4𝛾)𝐼2,2 − 2𝑔21Γ(−3𝛾)𝐼2,1 + Γ(−2𝛾)𝐼1,1) , 𝛾 < 0.

Consider now 𝛾 > 0 and note

∫
∞

0
(e−𝑧𝑡 − e−𝑢) 𝑢−𝛽−1 d𝑢 =

Γ(1 − 𝛽)
𝛽

(1 − 𝑧𝛽), 𝛽 ∈ (0, 1).

to obtain via (3.8.12)

𝐶𝜉 ,𝑗 ,𝑘 =− 𝛾
𝑗𝑘𝑔𝑗+𝑘
𝑗 + 𝑘 ∫

1

0 (𝐴
(𝑗+𝑘)𝛾
𝜉 − 1)𝑤

−𝑗𝛾−1(1 − 𝑤)−𝑘𝛾−1 d𝑤

= − 𝛾
𝑗𝑘𝑔𝑗+𝑘
𝑗 + 𝑘

𝐼𝑗 ,𝑘 .

Plugging this into (3.8.11) yields the in (3.8.8) stated formula for 𝛾 > 0.
Let 𝛾 = 0 and use the transformation 𝑆𝑖,𝜉 = exp(−𝑍𝑖,𝜉 ) to obtain

𝐶𝜉 ∶= Cov(ℎ1(𝑍1,𝜉 ), ℎ1(𝑍2,𝜉 )) =
1
4
𝐶𝜉 ,2,2 + 𝛾𝐸𝐶𝜉 ,2,1 + 𝛾2𝐸𝐶𝜉 ,1,1, (3.8.15)

where 𝐶𝜉 ,𝑗 ,𝑘 ∶= Cov(log𝑗 𝑆1,𝜉 , log𝑘 𝑆2,𝜉 ), 𝑗 , 𝑘 = 1, 2 and 𝛾𝐸 denotes the Euler–Mascheroni
constant. Simple but tedious calculations to derive the differences needed in Hoeffd-
ings Lemma result in

P(log 𝑆1,𝜉 ≤ 𝑠, log 𝑆2,𝜉 ≤ 𝑡) − P(log 𝑆1,𝜉 ≤ 𝑠)P(log 𝑆2,𝜉 ≤ 𝑡)

= exp(−(e
𝑠 + e𝑡)𝐴𝜉 (

e𝑡

e𝑡 + e𝑠))
− exp (−(e𝑠 + e𝑡)) , 𝑠, 𝑡 ∈ R;

P(log2 𝑆1,𝜉 ≤ 𝑠, log 𝑆2,𝜉 ≤ 𝑡) − P(log2 𝑆1,𝜉 ≤ 𝑠)P(log 𝑆2,𝜉 ≤ 𝑡)

= exp(−(e
√
𝑠 + e𝑡)𝐴𝜉 (

e𝑡

e𝑡 + e
√
𝑠))− exp(−(e−

√
𝑠 + e𝑡)𝐴𝜉 (

e𝑡

e𝑡 + e−
√
𝑠))

− exp(−(e
√
𝑠 + e𝑡)) + exp(−(e−

√
𝑠 + e𝑡)), 𝑠 > 0, 𝑡 ∈ R;
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P(log2 𝑆1,𝜉 ≤ 𝑠, log2 𝑆2,𝜉 ≤ 𝑡) − P(log2 𝑆1,𝜉 ≤ 𝑠)P(log2 𝑆2,𝜉 ≤ 𝑡)

= exp
(
−(e

√
𝑠 + e

√
𝑡)𝐴𝜉 (

e
√
𝑡

e
√
𝑡 + e

√
𝑠))

− exp(−(e
√
𝑠 + e

√
𝑡))

+ exp
(
−(e−

√
𝑠 + e−

√
𝑡)𝐴𝜉 (

e−
√
𝑡

e−
√
𝑡 + e−

√
𝑠))

− exp(−(e
−
√
𝑠 + e−

√
𝑡))

− exp
(
−(e−

√
𝑠 + e

√
𝑡)𝐴𝜉 (

e
√
𝑡

e
√
𝑡 + e−

√
𝑠))

+ exp(−(e
−
√
𝑠 + e

√
𝑡))

− exp
(
−(e

√
𝑠 + e−

√
𝑡)𝐴𝜉 (

e−
√
𝑡

e−
√
𝑡 + e

√
𝑠))

+ exp(−(e
√
𝑠 + e−

√
𝑡)) , 𝑠, 𝑡 > 0.

Hoeffding’s Lemma, the upper displays and substitutions of the form 𝑢 = e±
√
𝑠 + e±

√
𝑡 , 𝑤 =

e±
√
𝑡 /(e±

√
𝑠 + e±

√
𝑡) yield

𝐶𝜉 ,1,1 = ∫
1

0
∫

∞

0
(e−𝑢𝐴𝜉 (𝑤) − e−𝑢)

1
𝑢𝑤(1 − 𝑤)

d𝑢 d𝑤,

𝐶𝜉 ,2,1 = 2 ∫
1

0
∫

∞

0
(e−𝑢𝐴𝜉 (𝑤) − e−𝑢)

log 𝑢 + log(1 − 𝑤)
𝑢𝑤(1 − 𝑤)

d𝑢 d𝑤,

𝐶𝜉 ,2,2 = 4 ∫
1

0
∫

∞

0
(e−𝑢𝐴𝜉 (𝑤) − e−𝑢)

(log 𝑢 + log(1 − 𝑤))(log 𝑢 + log𝑤)
𝑢𝑤(1 − 𝑤)

d𝑢 d𝑤.

(3.8.16)

Invoke the following integral identities

∫
∞

0
(e−𝑢𝑧 −𝑒−𝑢)

1
𝑢
d𝑢 = − log 𝑧,

∫
∞

0
(e−𝑢𝑧 −𝑒−𝑢)

log 𝑢
𝑢

d𝑢 = log 𝑧
log 𝑧 + 2𝛾𝐸

2
,

∫
∞

0
(e−𝑢𝑧 −𝑒−𝑢)

log2 𝑢
𝑢

d𝑢 = − log 𝑧
𝜋2 + 6𝛾2𝐸 + 2 log2 𝑧 + 6𝛾𝐸 log 𝑧

6
for 𝑧 > 0 to obtain via (3.8.16)

∫
1

0
𝐶𝜉 ,1,1 d𝜉 = ∫

1

0

1
𝑤(1 − 𝑤) ∫

1

0
− log(𝐴𝜉 (𝑤)) d𝜉 d𝑤,

∫
1

0
𝐶𝜉 ,2,1 d𝜉

= ∫
1

0

1
𝑤(1 − 𝑤) ∫

1

0
log(𝐴𝜉 (𝑤))[2𝛾𝐸 − 2 log(1 − 𝑤)

+ log𝐴𝜉 (𝑤)] d𝜉 d𝑤,

∫
1

0

𝐶𝜉 ,2,2
4

d𝜉

= ∫
1

0

1
𝑤(1 − 𝑤) ∫

1

0
−𝛾2𝐸 log 𝐴𝜉 (𝑤) + 𝛾𝐸 log 𝐴𝜉 (𝑤)[ − log𝐴𝜉 (𝑤)

+ log(1 − 𝑤) + log𝑤]

+ log𝐴𝜉 (𝑤)[ −
𝜋2 + 2 log2 𝐴𝜉 (𝑤)

6
− log𝑤 log(1 − 𝑤)

+ log𝐴𝜉 (𝑤)
log(1 − 𝑤) + log𝑤

2 ] d𝜉 d𝑤.

(3.8.17)
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Now plug these formulas into (3.8.15), simplify and integrate to get

∫
1

0
𝐶𝜉 d𝜉 = ∫

1/2

0

1
𝑤(1 − 𝑤) ∫

1

0
log 𝐴𝜉 (𝑤)[ −

𝜋2 + 2 log2 𝐴𝜉 (𝑤)
3

+ log𝐴𝜉 (𝑤)(log(1 − 𝑤) + log𝑤) − 2 log𝑤 log(1 − 𝑤)] d𝜉 d𝑤

= ∫
1/2

0

1
3𝑤2(1 − 𝑤)[

(𝑤 − 1) log3(1 − 𝑤) − 3(𝑤 − 1) log2(1 − 𝑤) log𝑤

+ 𝑤(12 + 𝜋2 + 6 log𝑤)

+ log(1 − 𝑤)(12 + 𝜋2 −𝑤(6 + 𝜋2) + 6 log𝑤)] d𝑤

=∶ ∫
1/2

0
𝑐𝜉 d𝜉.

The integrand 𝑐𝜉 has the antiderivative

𝐵(𝑤) = −
1
3𝑤[6𝑤 Li2(𝑤) + 6𝑤 Li3(1 − 𝑤)(log(1 − 𝑤) − 1)

+ 𝑤 log3(1 − 𝑤) − log3(1 − 𝑤) − 3𝑤 log𝑤 log2(1 − 𝑤)

+ 3 log2(1 − 𝑤) log𝑤 + 3 log2(1 − 𝑤) − 6𝑤 log(1 − 𝑤)

+ 6𝑤 log(1 − 𝑤) log𝑤 + 6 log𝑤 log(1 − 𝑤)

+ 𝜋2 log(1 − 𝑤) + 18 log(1 − 𝑤) + 6𝑤 log𝑤], 𝑤 ∈ (0, 1/2),

where Li𝑗 (𝑤) ∶= ∑∞
𝑘=1 𝑤𝑘/𝑘𝑗 denotes the Polylogarithm function for 𝑤 ∈ (0, 1) and 𝑗 ∈ N.

Take the limits to get

lim
𝑤↓0

𝐹(𝑤) = 6 − 2𝜁 (3),

lim
𝑤↑0

𝐹(𝑤) = −
7
4
𝜁 (3) −

𝜋2

3
+
4
3
log3(2) − 6 log2(2) + 12 log 2 +

2
3
𝜋2 log 2,

which imply the formula in (3.8.8) for 𝛾 = 0.

3.8.4 Additional simulation results on the bias-corrected estimator

By construction, the expectation of the bias-corrected sliding blocks estimator from Re-
mark 3.2.8 should be close to the expectation of the disjoint blocks estimator. In terms
of bias, no improvement ‘beyond’ the disjoint blocks bias should be visible. This intu-
ition has been confirmed in simulation experiments, both where 𝑟 is fixed with target
parameter depending on 𝑟 , and where 𝑛 is fixed with target parameter depending on
the limiting attractor distribution.

Regarding the former case, we chose to fix 𝑟 = 90 and consider the estimation of the
variance 𝜎2𝑟 in the ARMAX model with GPD margins. In Figure 3.5 we depict the ex-
pected difference (calculated based on averaging over 1000 simulation runs) between
(1) the corrected sliding blocks estimator and the disjoint blocks and (2) the corrected
sliding blocks estimator and the plain sliding blocks estimator. The results reveal that,
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Figure 3.5: Expected differences E[𝜎̂db𝑟 − 𝜎̂sb𝑟 ] and E[𝜎̂db𝑟 − 𝜎̂sb−corr𝑟 ], with fixed block size
𝑟 = 90 and for increasing effective sample size 𝑚 (i.e., number of disjoint
blocks). The four columns correspond to four time series models, and the
four rows to four choices of GPD-margins for the innovations.

indeed, the expected value of the corrected sliding blocks estimator is the same as the
expected value of the disjoint blocks estimator; the two hence have the same bias. The
overall performance of the three estimators is compared in Figure 3.6. The results show
that, once again, the bias is clearly negligible compared to the variance for all three
estimators (the reason being that the target parameter is 𝜎2𝑟 , which is not an ‘asymp-
totic’ parameter). In terms of estimation variance we observe that, the larger 𝛾 and the
smaller 𝑚, the closer the estimation variance of the corrected estimator is to the esti-
mation variance of the disjoint blocks counterpart (as a consequence, the plain sliding
blocks estimator overall wins the race). The observed behavior in terms of 𝑚 may be
explained by the fact that, for fixed 𝑟 = 90, the percentage of summands that is removed
for the corrected sliding estimator is quite large for small 𝑚 (e.g., ≈ 10% for 𝑚 = 20),
while it is much smaller for large 𝑚 (e.g., ≈ 2% for 𝑚 = 100).

Next, regarding the case where 𝑛 is fixed, we chose to fix 𝑛 = 1000 and consider esti-
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Figure 3.6: Estimation variance and squared bias of 𝜎̂db𝑟 , 𝜎̂sb𝑟 and 𝜎̂sb−corr𝑟 , with fixed
block size 𝑟 = 90 and for increasing effective sample size 𝑚 (i.e., number of
disjoint blocks). The four columns correspond to four time series models,
and the four rows to four choices of GPD-margins for the innovations.

mation of Kendall’s tau in the bivariate i.i.d. case drawn from the outer power Clayton
copula (similar results were obtained for other time series models). The results are sum-
marized in Figure 3.7. We observe that the bias of all three estimators is nearly identical
(which may be explained by the fact that the bias is dominated by the difference 𝜏𝑟 − 𝜏
for all three estimators), and that the variance of the bias-corrected and the plain sliding
estimators are nearly identical as well (which is akin to the case 𝛾 = −0.4 in Figure 3.5).

Overall, in view of the preceding findings and the fact that the bias-corrected estima-
tor may be computationally more expensive, we cannot recommend its use in practice
in general (note that Bücher and Zanger (2023), Section E.3, came to the same conclu-
sion).
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4 Bootstrapping block maxima estimators for time series

In this section we present the preprint Bücher and Staud (2024a) which is concerned
with bootstrapping within the block maxima method. Only minor changes to improve
the presentation within this thesis have been made.

Abstract

The block maxima method is a standard approach for analyzing the ex-
tremal behavior of a potentially multivariate time series. It has recently been
found that the classical approach based on disjoint block maxima may be
universally improved by considering sliding block maxima instead. How-
ever, the asymptotic variance formula for estimators based on sliding block
maxima involves an integral over the covariance of a certain family of mul-
tivariate extreme value distributions, which makes its estimation, and infer-
ence in general, an intricate problem. As an alternative, one may rely on
bootstrap approximations: we show that naive block-bootstrap approaches
from time series analysis are inconsistent even in i.i.d. situations, and pro-
vide a consistent alternative based on resampling circular block maxima. As
a by-product, we show consistency of the classical resampling bootstrap for
disjoint block maxima, and that estimators based on circular block maxima
have the same asymptotic variance as their sliding block maxima counter-
parts. The finite sample properties are illustrated by Monte Carlo experi-
ments, and the methods are demonstrated by a case study of precipitation
extremes.

Keywords. Bootstrap Consistency; Disjoint and Sliding Block Maxima; Extreme Value
Statistics; Pseudo Maximum Likelihood Estimation; Time Series Analysis.

MSC subject classifications. Primary 62F40, 62G32; Secondary 62E20.

4.1 Introduction

Let (𝑿𝑡)𝑡∈Z with 𝑿𝑡 = (𝑋𝑡1, … , 𝑋𝑡𝑑)⊤ denote a stationary time series in R𝑑 . For block
size 𝑟 ∈ N, let 𝑴𝑟 = max𝑟𝑡=1𝑿𝑡 = (max𝑟𝑡=1 𝑋𝑡1, … ,max𝑟𝑡=1 𝑋𝑡𝑑)⊤ denote the componentwise
maximum over 𝑟 successive observations. In view of a version of the classical extremal
types theorem for multivariate time series, the distribution of 𝑴𝑟 may be approximated
by a multivariate extreme value distribution, for sufficiently large block size 𝑟 (see Sec-
tion 4.2.1 for details). Both the distribution of 𝑴𝑟 and parameters related to its potential
weak limit distribution are common target parameters in extreme value statistics, with
applications in finance, insurance or environmental statistics among others (Beirlant
et al., 2004; Katz et al., 2002; Philip et al., 2020).
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Suppose 𝑿1, … , 𝑿𝑛 is an observed stretch from (𝑿𝑡)𝑡∈Z. The classical block maxima
method for estimating parameters associated with the law of 𝑴𝑟 (or its limiting law
for 𝑟 → ∞) consists of dividing the sampling period {1, … , 𝑛} into 𝑚 disjoint blocks
of length 𝑟 (for simplicity, we assume that 𝑛 = 𝑚𝑟), and of using the sample of (dis-
joint) block maxima (𝑴(db)

1,𝑟 , … ,𝑴(db)
𝑚,𝑟 ) as a starting point for statistical methods; here

𝑴(db)
𝑖,𝑟 = max𝑡=(𝑖−1)𝑟+1,…,𝑖𝑟 𝑿𝑡 denotes the 𝑖th disjoint block maximum. This classical ap-

proach can often be improved by instead considering the sample of sliding block max-
ima (𝑴(sb)

1,𝑟 , … ,𝑴(sb)
𝑛−𝑟+1,𝑟) as a starting point; here 𝑴(sb)

𝑖,𝑟 = max𝑡=𝑖,…,𝑖+𝑟−1𝑿𝑡 denotes the block
maximum of size 𝑟 starting at “day” 𝑖. Note that this sample also provides a station-
ary, but strongly auto-correlated sample from the law of 𝑴𝑟 . It was shown in Bücher
and Segers (2018a); Zou et al. (2021) among others that estimators that explicitly or im-
plicitly involve empirical means of the sliding block maxima sample typically have the
same expectation but a slightly smaller variance than the respective counterparts based
on the disjoint block maxima sample.

It seems natural that a lower estimation variance offers the possibility of constructing
smaller confidence intervals for a given confidence level. The main goal of this work
is to find universal practical solutions for this heuristic based on suitable bootstrap
approximations. A challenge consists of the fact that the large sample asymptotics of
the sliding block maxima method depend on a blocking of blocks approach involving
some intermediate blocking parameter converging to infinity at a well-balanced rate,
whence standard bootstrap approaches for time series like the block bootstrap (Lahiri,
2003) would depend on such an intermediate blocking parameter as well (which must
be avoided due to the typically small effective sample size in extreme value analysis).
However, as we will show, a novel approach based on what we call the circular (slid-
ing) block maxima sample allows for consistent distributional approximations without
relying on such an intermediate parameter sequence. At the same time, the method is
computationally attractive because it avoids recalculation of any block maxima for the
bootstrap sample.

In general, various variants of the bootstrap have been routinely applied in extreme
value statistics (see, for instance, Eastoe and Tawn, 2008; Huser and Davison, 2014).
However, to the best of our knowledge, respective statistical theory is only available
for the peak-over-threshold method (Peng and Qi, 2008; Drees, 2015; Davis et al., 2018;
Kulik and Soulier, 2020; Jentsch and Kulik, 2021; de Haan and Zhou, 2024). Concerning
the block maxima method, within the regime where the block size is treated as a param-
eter sequence 𝑟 = 𝑟𝑛 converging to infinity, the only reference we are aware of is de Haan
and Zhou (2024), who derive an asymptotic expansion for the tail quantile process of
bootstrapped disjoint block maxima. However, their results require an underlying i.i.d.
sequence, they only concern the disjoint block maxima method and they do not even-
tually imply desirable classical consistency statements. While our main focus is on the
sliding block maxima method, we establish consistency results for the disjoint block
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maxima method as a by-product, for serially dependent data.

Finally, we also derive limit results for empirical means and estimators based on the
circular (sliding) block maxima sample, and prove that they show the same favorable
asymptotic behavior as the sliding block maxima counterparts. As we will discuss
in the conclusion, the result may be of independent interest when dealing with non-
stationary situations involving, for example, trends; note that the latter is a typical use
case for climate extremes.

The remaining parts of this paper are organized as follows: basic model assump-
tions and known results on the disjoint and sliding block maxima method are collected
in Section 4.2. The sample of circular block maxima is introduced in Section 4.3 and
supplemented by a central limit theorem. Respective bootstrap schemes are proposed
in Section 4.4, where we also provide respective consistency statements. The previ-
ous high-level results are applied to a specific estimation problem for univariate heavy
tailed time series in Section 4.5. Finite-sample results on a large-scale simulation study
and a small case study are presented in Sections 4.6 and 4.7, respectively. Section 4.8
concludes, and all proofs and technical conditions are collected in Sections 4.9-4.11.
Some additional theoretical results and simulation results are deferred to a sequence of
appendices.

Throughout, weak convergence of sequences of random vectors/distributions is de-
noted by⇝. The code used for the simulation study is available on Github, see Staud
(2024).

4.2 Mathematical preliminaries

4.2.1 Basic model assumptions

An extension of the classical extremal types theorem to strictly stationary time series
(Leadbetter, 1983) implies that, under suitable broad conditions, affinely standardized
maxima extracted from a stationary time series converge to the generalized extreme
value distribution (GEV). This was generalized to the multivariate case in Hsing (1989),
where the marginals are necessarily GEV-distributed. We make this an assumption, and
additionally require the scaling sequences to exhibit some common regularity inspired
by the max-domain of attraction condition in the i.i.d. case (de Haan and Ferreira, 2006).

Condition 4.2.1 (Multivariate max-domain of attraction). Let (𝑿𝑡)𝑡∈Z denote a strictly
stationary time series in R𝑑 with continuous margins. There exist sequences (𝒂𝑟)𝑟 =
(𝑎(1)𝑟 , … , 𝑎(𝑑)𝑟 ))𝑟 ⊂ (0,∞)𝑑 , (𝒃𝑟)𝑟 = (𝑏(1)𝑟 , … , 𝑏(𝑑)𝑟 )𝑟 ⊂ R𝑑 and 𝜸 = (𝛾(1), … , 𝛾(𝑑)) ∈ R𝑑 , such that,
for any 𝑠 > 0 and 𝑗 ∈ {1, … , 𝑑},

lim
𝑟→∞

𝑎(𝑗)⌊𝑟𝑠⌋

𝑎(𝑗)𝑟
= 𝑠𝛾

(𝑗)
, lim

𝑟→∞

𝑏(𝑗)⌊𝑟𝑠⌋ − 𝑏
(𝑗)
𝑟

𝑎(𝑗)𝑟
=
𝑠𝛾(𝑗) − 1
𝛾(𝑗)

, (4.2.1)
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where the second limit is interpreted as log(𝑠) if 𝛾(𝑗) = 0. Moreover, for 𝑟 → ∞,

𝒁𝑟 =
𝑴𝑟 − 𝒃𝑟
𝒂𝑟

⇝ 𝒁 ∼ 𝐺, (4.2.2)

where𝐺 denotes a 𝑑-variate extreme-value distribution with marginal c.d.f.s𝐺𝛾(1) , … , 𝐺𝛾(𝑑)
(with 𝐺𝛾(𝑥) = exp(−(1 + 𝛾𝑥)−1/𝛾)𝟏 {1 + 𝛾𝑥 > 0} the cdf of the GEV(𝛾)-distribution) and
where division by the vector 𝒂𝑟 is understood componentwise, that is, 𝒁𝑟 = (𝑍 (1)

𝑟 , … , 𝑍 (𝑑)
𝑟 )

with 𝑍 (𝑗)
𝑟 = {max(𝑋 (𝑗)

1 , … , 𝑋 (𝑗)
𝑟 ) − 𝑏(𝑗)𝑟 }/𝑎(𝑗)𝑟 for 𝑗 ∈ {1, … , 𝑑}.

Note that (4.2.1) and (4.2.2) may for instance be deduced from Leadbetter’s 𝐷(𝑢𝑛)
condition, a domain-of-attraction condition on the associated i.i.d. sequence with sta-
tionary distribution equal to that of 𝑿0 and a weak requirement on the convergence of
the c.d.f. of 𝒁𝑟 , see Theorem 10.22 in Beirlant et al. (2004).

Throughout this paper, we assume to observe𝑿1, … , 𝑿𝑛, an excerpt from a 𝑑-dimensional
time series (𝑿𝑡)𝑡∈Z satisfying Condition 4.2.1. Block maxima will be formed with respect
to a block size parameter 𝑟 = 𝑟𝑛 converging to infinity such that 𝑟 = 𝑜(𝑛). For estab-
lishing the subsequent limit results, the serial dependence of (𝑿𝑡)𝑡 will additionally be
controlled via the Rosenblatt mixing coefficient (Bradley, 2005). For two sigma-fields
1,2 on a probability space (Ω,,P), let 𝛼(1,2) = sup𝐴∈1,𝐵∈2

|P(𝐴 ∩ 𝐵) − P(𝐴)P(𝐵)|.
For positive integer 𝑝, let 𝛼(𝑝) ∶= 𝛼(𝜎((𝑿𝑡)𝑡≤0), 𝜎((𝑿𝑡)𝑡≥𝑝)), with 𝜎(⋅) denoting the sigma-
field generated by its argument.

Condition 4.2.2 (Block size and mixing). For the block size sequence (𝑟𝑛)𝑛 it holds that,
as 𝑛 → ∞:

(a) 𝑟𝑛 → ∞ and 𝑟𝑛 = 𝑜(𝑛).
(b) There exists a sequence (𝓁𝑛)𝑛 ⊂ N such that 𝓁𝑛 → ∞, 𝓁𝑛 = 𝑜(𝑟𝑛), 𝑟𝑛

𝓁𝑛𝛼(𝓁𝑛) = 𝑜(1), and
𝑛
𝑟𝑛𝛼(𝓁𝑛) = 𝑜(1).

(c) ( 𝑛
𝑟𝑛 )

1+𝜔𝛼(𝑟𝑛) = 𝑜(1) for some 𝜔 > 0.

4.2.2 Empirical means of rescaled disjoint or sliding block maxima

A central theoretical ingredient for establishing weak limit results on estimators based
on the block maxima method is the weak convergence of either the tail quantile process
or of empirical means of (unobservable) rescaled block maxima. Respective results on
the former can be found in Theorem 2.1 in Ferreira and de Haan (2015), while the latter
approach was taken in Theorems 2.6/B.1 in Bücher and Zanger (2023), in the proof
of Theorem 2.6 in Bücher and Segers (2018a) or in Theorem 2.4 in Zou et al. (2021).
Throughout this paper, we also follow the latter approach, and for completeness, we
summarize the essence of the respective results in a theorem and briefly summarize
and discuss potential statistical applications.

For 𝑖 ∈ {1, … , 𝑛− 𝑟 +1}, write𝑴𝑟 ,𝑖 = max(𝑿𝑖, … , 𝑿𝑖+𝑟−1), and define (db)
𝑛,𝑟 = (𝑴𝑟 ,𝑖 ∶ 𝑖 ∈ 𝐼 db𝑛 )

and (sb)
𝑛,𝑟 = (𝑴𝑟 ,𝑖 ∶ 𝑖 ∈ 𝐼 sb𝑛 ) as the (vanilla) disjoint and sliding block maxima sam-

ples, respectively, where 𝐼 db𝑛 = {(𝑖 − 1)𝑟 + 1 ∶ 1 ≤ 𝑖 ≤ 𝑛/𝑟} and 𝐼 sb𝑛 = {1, … , 𝑛 − 𝑟 + 1}.
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We are interested in the associated empirical measures 𝑛−1mb∑𝑖∈𝐼mb
𝑛
𝛿𝑴𝑟 ,𝑖 , or their versions

based on rescaled block maxima 𝑛−1mb∑𝑖∈𝐼mb
𝑛
𝛿(𝑴𝑟 ,𝑖−𝒃𝑟 )/𝒂𝑟 , with 𝑛mb = |𝐼mb

𝑛 | and 𝛿𝒛 the Dirac-
measure at 𝒛. The fact that the sample size 𝑛mb depends on mb is a notational nui-
sance which we subsequently resolve by the following asymptotically negligible mod-
ification: first, the disjoint block maxima sample may be identified with the sample
(db)

𝑛,𝑟 = (𝑴𝑟 ,1, … ,𝑴𝑟 ,1, … ,𝑴𝑟 ,𝑛/𝑟 , … ,𝑴𝑟 ,𝑛/𝑟) of size 𝑛 containing each disjoint block maxi-
mum exactly 𝑟 times; note that the respective empirical measures of (db)

𝑛,𝑟 and (db)
𝑛,𝑟

are the same. Next, we define (sb)
𝑛,𝑟 as the sliding block maxima sample of size 𝑛 calcu-

lated from the extended sample (𝑿1, … , 𝑿𝑛, 𝑿𝑛+1, … , 𝑿𝑛+𝑟−1). In the subsequent asym-
pototic results, this modification is asymptotically negligible since the first 𝑛 − 𝑟 + 1
maxima in (sb)

𝑛,𝑟 are exactly the maxima in (sb)
𝑛,𝑟 . These modifications allow to de-

fine (𝑴(mb)
𝑟,1 , … ,𝑴(mb)

𝑟,𝑛 ) ∶= (mb)
𝑛,𝑟 , and using the notation 𝒁(mb)

𝑟,𝑖 ∶= (𝑴(mb)
𝑟,𝑖 − 𝒃𝑟)/𝒂𝑟 , we

define
Ḡ(mb)
𝑛,𝑟 =

√
𝑛
𝑟 (

P(mb)
𝑛,𝑟 − 𝑃𝑟), G(mb)

𝑛,𝑟 =
√
𝑛
𝑟 (

P(mb)
𝑛,𝑟 − 𝑃),

where P(mb)
𝑛,𝑟 = 1

𝑛 ∑
𝑛
𝑖=1 𝛿𝒁(mb)

𝑟,𝑖
, 𝑃𝑟 = P(𝒁𝑟 ∈ ⋅) and 𝑃 = P(𝒁 ∈ ⋅). Finally, let

𝐺𝜉 (𝒙, 𝒚) = 𝐺(𝒙)𝜉∧1𝐺(𝒚)𝜉∧1𝐺(𝒙 ∧ 𝒚)1−(𝜉∧1), 𝒙, 𝒚 ∈ R𝑑 , (4.2.3)

and note that 𝐺𝜉 is a 2𝑑-variate extreme-value distribution; see Formula (3.8) and its
discussion in Bücher and Staud (2024b) for further details.

Theorem 4.2.3. Under Conditions 4.2.1 and 4.2.2, for any finite set of real valued functions
ℎ1, … , ℎ𝑞 satisfying the integrability Condition 4.10.1(a) with 𝜈 > 2/𝜔 where 𝜔 is from Condi-
tion 4.2.2, we have, writing 𝒉 = (ℎ1, … , ℎ𝑞)⊤,

Ḡ(mb)
𝑛,𝑟 𝒉 = (Ḡ(mb)

𝑛,𝑟 ℎ1, … , Ḡ(mb)
𝑛,𝑟 ℎ𝑞)

⊤
⇝𝑞(𝟎, Σ(mb)

𝒉 ), mb ∈ {db, sb},

where

(Σ
(db)
𝒉 )

𝑞
𝑗,𝑗 ′=1 = Cov (ℎ𝑗 (𝒁), ℎ𝑗 ′(𝒁)), (Σ

(sb)
𝒉 )

𝑞
𝑗,𝑗 ′=1 = 2 ∫

1

0
Cov (ℎ𝑗 (𝒁1,𝜉 ), ℎ𝑗 ′(𝒁2,𝜉 )) d𝜉,

(4.2.4)
with 𝒁 ∼ 𝐺 from Condition 4.2.1 and (𝒁1,𝜉 , 𝒁2,𝜉 ) ∼ 𝐺𝜉 from (4.2.3). Moreover, Σ(sb)𝒉 ≤𝐿 Σ(db)𝒉 ,
where ≤𝐿 denotes the Loewner ordering. Finally, if the bias Condition 4.10.2 holds, then

G(mb)
𝑛,𝑟 𝒉 = (G(mb)

𝑛,𝑟 ℎ1, … ,G(mb)
𝑛,𝑟 ℎ𝑞)

⊤
⇝𝑞(𝑩𝒉, Σ(mb)

𝒉 ).

Proof. The proof is a simplified version of our proof of Theorem 4.3.2 below, whence
we omit further details. Under slightly different conditions, a proof can be found in
Theorem B.1 in Bücher and Zanger (2023) or Theorem 8.7 in Bücher and Staud (2024b).

In statistical applications, one is typically interested in distributional approximations
for the estimation error of general statistics depending on the observable block maxima
𝑴𝑟 ,𝑖 (here and in the following, we omit the upper index ‘mb’). As discussed in the
following remark, such approximations can be deduced from Theorem 4.2.3.
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4 Bootstrapping block maxima estimators for time series

Remark 4.2.4 (Normal approximations for statistics depending on observable block max-
ima). Suppose that 𝜽̂𝑛 = 𝝋𝑛(𝑴𝑟 ,1, … ,𝑴𝑟 ,𝑛) is some estimator of interest for a target pa-
rameter 𝜽𝑟 ∈ R𝑝 (with 𝑝 ∈ N), where 𝝋𝑛 is a measurable function on (R𝑑)𝑛 with values
in R𝑝. As discussed in Example 4.2.5 below, for many functions 𝝋𝑛 of practical interest
there exists a positive integer 𝑞 and functions 𝝍𝑛∶ (R𝑑)𝑛 → R𝑞 , 𝐴∶ (0,∞)𝑑 × R𝑑 → R𝑝×𝑞

and 𝐵∶ R𝑑 × (0,∞)𝑑 → R𝑝 such that

𝝋𝑛(𝒎1, … ,𝒎𝑛) = 𝐴(𝒂, 𝒃)𝝍𝑛(
𝒎1 − 𝒃
𝒂

,… ,
𝒎𝑛 − 𝒃
𝒂 ) + 𝐵(𝒂, 𝒃) (4.2.5)

for all 𝒎1, … ,𝒎𝑛 ∈ R𝑑 and 𝒃 ∈ R𝑑 , 𝒂 ∈ (0, ∞)𝑑 . In such a case, if we further assume that
there exists a sequence 𝝑𝑟 ∈ R𝑞 solving the equations

𝜽𝑟 = 𝐴(𝒂𝑟 , 𝒃𝑟)𝝑𝑟 + 𝐵(𝒂𝑟 , 𝒃𝑟) (4.2.6)

(again, see below for examples), we immediately obtain that the estimation error of 𝜽̂𝑛
can be written as

𝜽̂𝑛 − 𝜽𝑟 = 𝐴(𝒂𝑟 , 𝒃𝑟)(𝝑̂𝑛 − 𝝑𝑟), (4.2.7)

where 𝝑̂𝑛 ∶= 𝝍𝑛(𝒁𝑟 ,1, … , 𝒁𝑟 ,𝑛) is a function of the rescaled block maxima. The difference
𝝑̂𝑛 − 𝝑𝑟 often allows for a linearization (for instance, by the delta-method): there exist
real-valued functions ℎ1, … , ℎ𝑞 such that

√
𝑛
𝑟
(𝝑̂𝑛 − 𝝑𝑟) = Ḡ𝑛,𝑟(ℎ1, … , ℎ𝑞)⊤ + 𝑅𝑛 (4.2.8)

for some remainder 𝑅𝑛 = 𝑜P(1). Loosely spoken, if the error term 𝑅𝑛 in the previous
display is sufficiently small, the previous two displays and Theorem 4.2.3 imply the
normal approximation

𝜽̂𝑛 − 𝜽𝑟 =
√
𝑟
𝑛
𝐴(𝒂𝑟 , 𝒃𝑟)

{
Ḡ𝑛,𝑟(ℎ1, … , ℎ𝑞)⊤ + 𝑅𝑛

}
≈𝑑 𝑝(0,

𝑟
𝑛
𝐴(𝒂𝑟 , 𝒃𝑟)Σ𝒉𝐴(𝒂𝑟 , 𝒃𝑟)⊤), (4.2.9)

where Σ𝒉 is the matrix from Theorem 4.2.3. More precisely, in the case where the matrix
𝐴 is invertible (in particular, 𝑝 = 𝑞), we obtain the more precise result

𝐴(𝒂𝑟 , 𝒃𝑟)−1
√
𝑛
𝑟
(𝜽̂𝑟 − 𝜽𝑟) = Ḡ𝑛,𝑟(ℎ1, … , ℎ𝑞)⊤ + 𝑜P(1)⇝𝑝(𝟎, Σ𝒉). (4.2.10)

Example 4.2.5. (i) Empirical variance: consider the case 𝑑 = 1 and the empirical vari-
ance 𝜃̂𝑛 = 𝑛−1∑𝑛

𝑖=1(𝑀𝑟 ,𝑖 − 𝑀̄𝑟 ,𝑛)2, where 𝑀̄𝑟 ,𝑛 ∶= 𝑛−1∑𝑛
𝑖=1𝑀𝑟 ,𝑖, considered as an estima-

tor for 𝜃𝑟 ∶= Var(𝑀𝑟 ,1). In that case, (4.2.5) is met with 𝑝 = 1, 𝑞 = 2, 𝝍𝑛(𝑧1, … , 𝑧𝑛) =
(( 1𝑛 ∑

𝑛
𝑖=1 𝑧𝑖)2, 1𝑛 ∑

𝑛
𝑖=1 𝑧2𝑖 )⊤, 𝐵(𝑎, 𝑏) = 0 and𝐴(𝑎, 𝑏) = (−𝑎2, 𝑎2). Moreover, 𝝑𝑟 = (E[𝑍𝑟 ,1]2, E[𝑍2

𝑟,1])⊤

is a solution to (4.2.6) satisfying (4.2.8): indeed, with ℎ1(𝑥) = 𝑥, ℎ2(𝑥) = 𝑥2, and using
𝑃𝑟ℎ1 → 𝑃ℎ1, we may write

√
𝑛
𝑟
(𝝑̂𝑛 − 𝝑𝑟) =

√
𝑛
𝑟 (

(P𝑛,𝑟ℎ1)2 − (𝑃𝑟ℎ1)2

P𝑛,𝑟ℎ2 − 𝑃𝑟ℎ2 )
=
√
𝑛
𝑟 (

(2𝑃ℎ1 + 𝑜P(1))(P𝑛,𝑟ℎ1 − 𝑃𝑟ℎ1)
P𝑛,𝑟ℎ2 − 𝑃𝑟ℎ2 )
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= Ḡ𝑛,𝑟((2𝑃ℎ1) ⋅ ℎ1, ℎ2)⊤ + 𝑜P(1).

Assembling terms and solving for 𝜃̂𝑛 − 𝜃𝑟 , we obtain
√ 𝑛

𝑟 𝑎
−2
𝑟 (𝜃̂𝑛 − 𝜃𝑟) = Ḡ𝑛,𝑟(ℎ2 − (2𝑃ℎ1) ⋅

ℎ1) + 𝑜P(1). The asymptotic variance of the limiting distribution has been explicitly cal-
culated in Bücher and Staud (2024b), see their Corollary 4.1 and their Equations (C.1)
and (C.2).

(ii) Probability weighted moments: consider the case 𝑑 = 1 and let 𝝋𝑛 ∶ R𝑛 → R𝑝

denote the vector containing the first 𝑝 empirical probability weighted moments. In
that case, Equation (4.2.5) is met with 𝑞 = 𝑝, 𝝍𝑛 = 𝝋𝑛, 𝐴(𝑎, 𝑏) = diag(𝑎, … , 𝑎) and
𝐵(𝑎, 𝑏) = diag(𝑏, 𝑏/2, … , 𝑏/(𝑝 + 1)); see Formula (A.7) in Bücher and Zanger (2023). More-
over, Equation (4.2.8) can be deduced from (A.5) in that paper (for 𝑝 = 3), with functions
ℎ1(𝑥) = 𝑥, ℎ2(𝑥) = 𝑥𝐺𝛾(𝑥) + ∫∞𝑥 𝑧 d𝐺𝛾(𝑧) and ℎ3(𝑥) = 𝑥𝐺2

𝛾 (𝑥) + 2 ∫∞𝑥 𝑧𝐺𝛾(𝑧) d𝐺𝛾(𝑧). Finally, up
to the treatment of a bias term, (4.2.10) corresponds to the assertion in their Theorem
3.2.

(iii) Pseudo maximum likelihood estimation in the heavy tailed case: the main steps
from Remark 4.2.4 also apply in a slightly modified setting tailored to the heavy tailed
case; details are worked out in Section 4.5 below.

In statistical applications, results like those in (4.2.9) are typically used as a starting
point for inference, for instance in the form of confidence intervals for 𝜽̂𝑛. Routinely,
such intervals would be based on normal approximations involving consistent estima-
tors for the variances on the right-hand side of those displays, which in our case re-
quires estimation of 𝒂𝑟 , 𝒃𝑟 and Σ𝒉 = Σ(mb)

𝒉 . This can be a complicated task, especially for
the sliding block maxima method in view of the complicated formula for the limiting
variance. Alternatively, one can rely on bootstrap approximations instead of normal
approximations, which can avoid the need for variance estimation. For the disjoint
blocks case, the proof of Theorem 4.2.3 shows that the disjoint block maxima can es-
sentially be considered independent (despite the serial dependence in the underlying
observations). This suggests that the standard bootstrap based on resampling with re-
placement from the disjoint block maxima should be consistent; a conjecture that will
be confirmed in Section 4.4. In the sliding block maxima case, however, the standard
bootstrap cannot work since it destroys the serial dependence in the sliding block max-
ima sample. In classical time series analysis, a remedy consists of the block bootstrap,
where blocks of successive observations are drawn with replacement. In our case, this
heuristically requires the choice of a smoothing parameter sequence that is of larger
order than the block size; see Remark 4.4.3 for details on the inconsistency of a naive
approach to bootstrapping sliding block maxima. An alternative approach relies on the
circular block maxima method as introduced in the next section.
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4.3 The circular block maxima sample

In this section we introduce the circular block maxima method. We show that respec-
tive empirical means yield the same asymptotic variance as the sliding block maxima
counterparts. The approach is interesting in its own (particularly for computational
reasons), but most importantly for this paper it suggests a straightforward bootstrap
approach for bootstrapping sliding block maxima that will be discussed in Section 4.4.

Formally, given a sample 𝑛 = (𝑿1, … , 𝑿𝑛) as before, the circular block maxima sample

(cb)
𝑛,𝑟 = (𝑴(cb)

𝑟,1 , … ,𝑴(cb)
𝑟,𝑛 )

is a new sample of size 𝑛 containing suitable block maxima that asymptotically fol-
low the distribution 𝐺 in (4.2.2). The sample depends on two parameters: the block
length parameter 𝑟 and an integer-valued parameter 𝑘 (for instance, 𝑘 = 2 or 𝑘 = 3) that
determines the length of the interval over which we apply the circular maximum op-
eration. Details for the univariate case are provided in Figure 4.1, where the sampling
period {1, … , 𝑛} has been decomposed into 𝑚(𝑘) ∶= 𝑚𝑛(𝑘) ∶= 𝑛/(𝑘𝑟) blocks of size 𝑘𝑟 , say
𝐼𝑘𝑟,1, … , 𝐼𝑘𝑟,𝑚(𝑘) with 𝐼𝑘𝑟,𝑖 = {(𝑖 − 1)𝑘𝑟 + 1, … , 𝑖𝑘𝑟}, and where we assume that 𝑚(𝑘) ∈ N

for simplicity. Note that every observation 𝑋𝑠 appears within exactly 𝑟 maximum-
operations, and hence has the same chance to become a block maximum (this is not
the case for the plain sliding block maxima sample, where, for instance, the very first
observation 𝑋1 can appear only once as sliding block maximum). This observation is in
fact the main motivation for the circularization approach within each 𝑘𝑟-block.

More formally, the notations used in Figure 4.1 are defined as follows: for a given
vector 𝑾 = (𝒘1, … , 𝒘𝑛) ∈ (R𝑑)𝑛 and 𝑖 ∈ {1, … , 𝑚(𝑘)}, we let

𝜋𝑘𝑟,𝑖(𝑾 ) = (𝒘𝑠)𝑠∈𝐼𝑘𝑟,𝑖 = (𝒘(𝑖−1)𝑘𝑟+1, … , 𝒘𝑖𝑘𝑟)

denote the projection of 𝑾 to its coordinates defined by the 𝑖-th 𝑘𝑟-block. For 𝑽 =
(𝒗1, … , 𝒗𝑞) ∈ (R𝑑)𝑞 with 𝑞 ∈ N≥𝑟 , consider the sliding-maxima-operation

slid-max(𝑽 ∣ 𝑟) = ( max
𝑠∈[1∶𝑟]

𝒗𝑠 , max
𝑠∈[2∶𝑟+1]

𝒗𝑠 , … , max
𝑠∈[𝑞−𝑟+1∶𝑞]

𝒗𝑠) ∈ (R𝑑)𝑞−𝑟+1,

where maxima over vectors in R𝑑 are to be understood componentwise and where
[𝑖 ∶ 𝑗] = {𝑖, 𝑖 + 1, … , 𝑗}. Next, for 𝑼 = (𝒖1, … , 𝒖𝑘𝑟) ∈ (R𝑑)𝑘𝑟 , the circularization function is
defined as

circ(𝑼 ∣ 𝑟) ∶= ( circ1(𝑼 ∣ 𝑟), … , circ𝑘𝑟+𝑟−1(𝑼 ∣ 𝑟)) ∶= (𝒖1, … , 𝒖𝑘𝑟 , 𝒖1, … , 𝒖𝑟−1) ∈ (R𝑑)𝑘𝑟+𝑟−1.

Finally, we define circ-max(𝑼 ∣ 𝑟) ∶= slid-max(circ(𝑼 ∣ 𝑟) ∣ 𝑟), that is,

circ-max(𝑼 ∣ 𝑟) = ( circ-max1(𝑼 ∣ 𝑟), … , circ-max𝑘𝑟(𝑼 ∣ 𝑟))

= ( max
𝑠∈[1∶𝑟]

circ𝑠(𝑼 ∣ 𝑟), max
𝑠∈[2∶𝑟+1]

circ𝑠(𝑼 ∣ 𝑟), … , max
𝑠∈[𝑘𝑟∶𝑘𝑟+𝑟−1]

circ𝑠(𝑼 ∣ 𝑟)) ∈ (R𝑑)𝑘𝑟 .
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 = (𝑋1, … , 𝑋𝑛) ∈ R𝑛

(𝑋𝑠)𝑠∈𝐼𝑘𝑟,𝑖 = (𝑋(𝑖−1)𝑘𝑟+1, … , 𝑋𝑖𝑘𝑟) ∈ R𝑘𝑟

(𝑋(𝑖−1)𝑘𝑟+1, … , 𝑋(𝑖−1)𝑘𝑟+𝑟−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

first 𝑟 − 1 observations

, 𝑋(𝑖−1)𝑘𝑟+𝑟 , … , 𝑋𝑖𝑘𝑟
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

last 𝑘𝑟 − (𝑟 − 1) observations

) ∈ R𝑘𝑟

(𝑋(𝑖−1)𝑘𝑟+1, … , 𝑋(𝑖−1)𝑘𝑟+𝑟−1, 𝑋(𝑖−1)𝑘𝑟+𝑟 , … , 𝑋𝑖𝑘𝑟 , 𝑋(𝑖−1)𝑘𝑟+1, … , 𝑋(𝑖−1)𝑘𝑟+𝑟−1
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

first 𝑟 − 1 observations get repeated

) ∈ R𝑘𝑟+𝑟−1

(max(𝑋(𝑖−1)𝑘𝑟+1, … , 𝑋(𝑖−1)𝑘𝑟+𝑟−1, 𝑋(𝑖−1)𝑘𝑟+𝑟)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

maximum over the first block of size 𝑟
in the previous vector

, … , max(𝑋𝑖𝑘𝑟 , 𝑋(𝑖−1)𝑘𝑟+1, … , 𝑋(𝑖−1)𝑘𝑟+𝑟−1)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

maximum over the last (i.e., 𝑘𝑟th) block of size 𝑟
in the previous vector

) ∈ R𝑘𝑟

(𝑀 (cb)
𝑟,𝑠 )𝑠∈𝐼𝑘𝑟,𝑖 = (𝑀 (cb)

𝑟,(𝑖−1)𝑘𝑟+1, … ,𝑀 (cb)
𝑟,𝑖𝑘𝑟) = circ-max((𝑋(𝑖−1)𝑘𝑟+1, … , 𝑋𝑖𝑘𝑟) ∣ 𝑟)

(cb)
𝑛,𝑟 ∶= (𝑀 (cb)

𝑟,1 , … ,𝑀 (cb)
𝑟,𝑛 )

𝜋𝑘𝑟,𝑖 (extract obs. from the 𝑖th 𝑘𝑟-block 𝐼𝑘𝑟,𝑖

= (rewrite block)

circ(⋅ ∣ 𝑟)

slid-max(⋅ ∣ 𝑟)

=∶

(concatenate blocks)

Figure 4.1: Illustration of calculating the circular block maxima sample.

It is constructive to take a closer look at the choices 𝑘 = 1 and 𝑘 = 𝑛/𝑟 (the number of
disjoint blocks). In the former case, the circmax-sample is the same as the disjoint block
maxima sample, but with every observation repeated exactly 𝑟 times. In the latter case,
the first 𝑛 − 𝑟 + 1 observations of the circmax-sample coincide with the sliding block
maxima sample. New samples are obtained for every other choice of 𝑘, and in the
subsequent developments we will mostly be interested in choices like 𝑘 = 2 or 𝑘 = 3.

A key feature of the circmax-sample consists of the fact that it can be stored and
evaluated efficiently. More precisely, for each 𝑘𝑟 block, the number of distinct circmax-
values in that block is typically very small (typically around 10 for realistic block and
sample sizes as observed in the simulation study); for instance, the largest observation
in each block is necessarily appearing exactly 𝑟 times. As such, the entire circmax-
sample can also be regarded as a weighted sample whose (random) size corresponds to
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the number of distinct values in the circmax-sample.
The following central result shows that the circmax-sample can be considered as

a sample from the ‘correct’-limit distribution 𝐺 from (4.2.2) (a similar result on joint
convergence of two circmax-observations can be found in Proposition 4.11.1). For 𝑠 ∈
{1, … , 𝑛}, define

𝒁(cb)
𝑟,𝑠 ∶=

𝑴(cb)
𝑟,𝑠 − 𝒃𝑟
𝒂𝑟

.

Note that we suppress the dependence on 𝑘 for notational convenience.

Proposition 4.3.1 (Weak convergence of circular block maxima). Suppose that Condi-
tion 4.2.1 and 4.2.2(a) are met and that 𝛼(𝑟𝑛) → 0. Then, for every fixed 𝑘 ∈ N and 𝜉 ∈ [0, 𝑘),
we have

𝒁(cb)
𝑟,1+⌊𝜉𝑟⌋ ⇝ 𝒁 ∼ 𝐺 (𝑛 → ∞).

Due to Proposition 4.3.1, statistical methods based on the circular block maxima
method may be expected to work, asymptotically. As discussed in Section 4.2.2, a
central ingredient for studying respective methods is weak convergence of empirical
means. Adopting the notation from that section, we denote the empirical processes
associated with the normalized sample 𝒁(cb)

𝑟,1 , … , 𝒁(cb)
𝑟,𝑛 by

Ḡ(cb)
𝑛,𝑟 =

√
𝑛
𝑟 (

P(cb)
𝑛,𝑟 − 𝑃 (cb)𝑛,𝑟 ), G̃(cb)

𝑛,𝑟 =
√
𝑛
𝑟 (

P(cb)
𝑛,𝑟 − 𝑃𝑟), G(cb)

𝑛,𝑟 =
√
𝑛
𝑟 (

P(cb)
𝑛,𝑟 − 𝑃), (4.3.1)

where P(cb)
𝑛,𝑟 = 1

𝑛 ∑
𝑛
𝑠=1 𝛿𝒁(cb)

𝑟,𝑠
, 𝑃 (cb)𝑛,𝑟 = 1

𝑘𝑟 ∑
𝑘𝑟
𝑠=1 P(𝒁(cb)

𝑟,𝑠 ∈ ⋅), 𝑃𝑟 = P(𝒁𝑟 ,1 ∈ ⋅) and 𝑃 = P(𝒁 ∈ ⋅).
The following result can be regarded as a circmax-counterpart of Theorem 4.2.3.

Theorem 4.3.2. Suppose that Conditions 4.2.1 and 4.2.2 are met. Then, for fixed 𝑘 ∈ N≥2 and
any finite set of real valued functions ℎ1, … , ℎ𝑞 satisfying the integrability Condition 4.10.1(b)
with 𝜈 > 2/𝜔 with 𝜔 from Condition 4.2.2, we have

Ḡ(cb)
𝑛,𝑟 𝒉⇝𝑞(𝟎, Σ(sb)𝒉 )

and lim𝑛→∞ Cov(Ḡ(cb)
𝑛,𝑟 𝒉) = Σ(sb)𝒉 with Σ(sb)𝒉 from (4.2.4). Moreover, if the bias Condition 4.10.3

holds, then
G̃(cb)
𝑛,𝑟 𝒉⇝𝑞(

𝐷𝒉,𝑘+𝐸𝒉
𝑘 , Σ(sb)𝒉 )

(with 𝐷𝒉,𝑘 often equal to zero, see Remark 4.3.3), and if additionally the bias Condition 4.10.2 is
met, then

G(cb)
𝑛,𝑟 𝒉⇝𝑞(𝐵𝒉 +

𝐷𝒉,𝑘+𝐸𝒉
𝑘 , Σ(sb)𝒉 ).

Remark 4.3.3. The bias term 𝐷𝒉,𝑘 + 𝐸𝒉 is due to the fact that the rescaled circular block
maxima max(𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟 , 𝑿1, … , 𝑿𝑡) with index 𝑠 = (𝑘 − 1)𝑟 + 1 + 𝑡 for some 𝑡 ∈
{1, … , 𝑟 − 1} are not equal in distribution to a generic block maximum variable 𝑴𝑟 . This
bias has two sources: 𝐷𝒉,𝑘 is a measure for the average (over 𝑡) difference induced by the
approximation of max(𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟 , 𝑿1, …𝑿𝑡) by max(𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟 , 𝑿̃1, … , 𝑿̃𝑡) (with
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(𝑿̃𝑡)𝑡 an independent copy of (𝑿̃𝑡)𝑡), while 𝐸𝒉 is a measure for the average difference
induced by the approximation of max(𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟 , 𝑿̃1, … , 𝑿̃𝑡) by that of a generic
block maximum variable 𝑴𝑟 . In Lemma 4.10.4 we provide simple sufficient conditions
for beta mixing time series that imply 𝐷𝒉,𝑘 = 𝐵𝒉 = 0.

The proof of Theorem 4.3.2 (see in particular Proposition 4.11.1) shows that the sam-
ple of 𝑘𝑟-blocks containing the circular block maxima can be considered asymptotically
independent. This is akin to the sample of disjoint block maxima and, as discussed after
Theorem 4.2.3, it suggests to define bootstrap versions of G(cb)

𝑛,𝑟 by drawing 𝑚(𝑘)-times
from the sample of 𝑘𝑟-blocks with replacement (which is computationally efficient: re-
call that all circular block maxima in a 𝑘𝑟-block could be efficiently stored as a weighted
sample with typically very few observations).

4.4 Bootstrapping block maxima estimators

Throughout this section, we discuss bootstrap approximations for the empirical pro-
cesses from Section 4.3. For completeness, we also cover the disjoint block maxima
case, as it can be identified with the circular block maxima sample for 𝑘 = 1.

For fixed 𝑘 ∈ N, consider the circmax-sample (cb)
𝑛,𝑟 . Independent of the observations,

let 𝑾𝑚(𝑘) = (𝑊𝑚(𝑘),1, … ,𝑊𝑚(𝑘),𝑚(𝑘)) = (𝑊1, … ,𝑊𝑚(𝑘)) be multinomially distributed with 𝑚(𝑘)
trials and class probabilities (𝑚(𝑘)−1, … , 𝑚(𝑘)−1). Given the sample (cb)

𝑛,𝑟 , the bootstrap
sample (cb),∗

𝑛,𝑟 is obtained by repeating the observations (𝑀 (cb)
𝑟,𝑠 )𝑠∈𝐼𝑘𝑟,𝑖 from the 𝑖th 𝑘𝑟-

block exactly 𝑊𝑚(𝑘),𝑖-times, for every 𝑖 = 1, … ,𝑚(𝑘). The respective empirical measure of
the rescaled bootstrap sample 𝒁(cb),∗

𝑟,1 , … , 𝒁(cb),∗
𝑟,𝑛 with 𝒁(cb),∗

𝑟,1 = (𝑴(cb),∗
𝑟,𝑠 − 𝒃𝑟)/𝒂𝑟 can then be

written as

P̂(cb),∗
𝑛,𝑟 =

1
𝑛

𝑛
∑
𝑠=1

𝛿𝒁(cb),∗
𝑟,𝑠

=
1
𝑛

𝑚(𝑘)

∑
𝑖=1

𝑊𝑚(𝑘),𝑖 ∑
𝑠∈𝐼𝑘𝑟,𝑖

𝛿𝒁(cb)
𝑟,𝑠
,

and the associated (centered) empirical process is given by

Ĝ(cb),∗
𝑛,𝑟 =

√
𝑛
𝑟
(P̂(cb),∗

𝑛,𝑟 − P(cb)
𝑛,𝑟 ). (4.4.1)

Note that the conditional distribution of Ĝ(cb),∗
𝑛,𝑟 given the data 𝑿1, … , 𝑿𝑛 can in practice

be approximated to an arbitrary precision based on repeated sampling of 𝑾𝑚(𝑘) (if 𝒂𝑟 , 𝒃𝑟
were known; we discuss extensions below). The following result shows that the boot-
strap process Ĝ(cb),∗

𝑛,𝑟 provides a consistent distributional approximation for Ḡ(cb)
𝑛,𝑟 and for

Ḡ(sb)
𝑛,𝑟 .

Theorem 4.4.1 (Asymptotic validity of the circmax-resampling bootstrap). Suppose Con-
ditions 4.2.1 and 4.2.2 are met. Then, for fixed 𝑘 ∈ N≥2 and 𝒉 satisfying the integrability
Condition 4.10.1(b) with 𝜈 > 2/𝜔 with 𝜔 from Condition 4.2.2, we have, for mb ∈ {sb, cb},

𝑑𝐾((Ĝ(cb),∗
𝑛,𝑟 𝒉 ∣ 𝑛),(Ḡ(mb)

𝑛,𝑟 𝒉)) = 𝑜P(1)
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as 𝑛 → ∞, where 𝑑𝐾 denotes the Kolmogorov metric for probability measures on R𝑞 . As a
consequence, if the bias Condition 4.10.2 is met and if 𝑟 is chosen sufficiently large to guarantee
that 𝐵𝒉 = 0, we have

𝑑𝐾((Ĝ(cb),∗
𝑛,𝑟 𝒉 ∣ 𝑛),(G(sb)

𝑛,𝑟 𝒉)) = 𝑜P(1),

and if also the bias Condition 4.10.3 is met with 𝐸𝒉 = 𝐷𝒉,𝑘 = 0, we have

𝑑𝐾((Ĝ(cb),∗
𝑛,𝑟 𝒉 ∣ 𝑛),(G(cb)

𝑛,𝑟 𝒉)) = 𝑜P(1).

Remarkably, the consistency of the circmax bootstrap for the sliding block maxima
method does not require the bias Condition 4.10.3 (nor 𝐸𝒉 = 𝐷𝒉,𝑘 = 0 in case it is met).

Remark 4.4.2 (Bootstrapping the disjoint block maxima empirical process). Consider the
disjoint block maxima sample, whose empirical means coincide with empirical means
based on the circular block maxima sample with 𝑘 = 1. The results from Theorem 4.4.1
continue to hold for 𝑘 = 1 (𝐷𝒉,𝑘 = 𝐸𝒉 = 0 is then immediate), but with ‘sb’ replaced by
‘db’ at all instances.

Remark 4.4.3 (Inconsistency of naive resampling of sliding block maxima). It seems nat-
ural to bootstrap sliding block maxima empirical means by the sliding block maxima
analogue of (4.4.1), that is, by

Ĝ(sb),∗
𝑛,𝑟 =

√
𝑛
𝑟
(P̂(sb),∗

𝑛,𝑟 − 𝑃𝑟), P̂(sb),∗
𝑛,𝑟 =

1
𝑛

𝑛
∑
𝑠=1

𝛿𝒁(sb),∗
𝑟,𝑠

=
1
𝑛

𝑚(𝑘)

∑
𝑖=1

𝑊𝑚(𝑘),𝑖 ∑
𝑠∈𝐼𝑘𝑟,𝑖

𝛿𝒁(sb)
𝑟,𝑠
.

Note that Ĝ(sb),∗
𝑛,𝑟 depends on 𝑘, which is suppressed from the notation. However, unlike

G(cb),∗
𝑛,𝑟 , this process is inconsistent for both Ḡ(sb)

𝑛,𝑟 and Ḡ(cb)
𝑛,𝑟 . Indeed, considering the case

𝑑 = 𝑞 = 1 for simplicity, we prove in the appendix that

𝑑𝐾((Ĝ(sb),∗
𝑛,𝑟 ℎ ∣ 𝑛), (𝟎, Σ(𝑘)ℎ )) = 𝑜P(1), (4.4.2)

where Σ(𝑘)ℎ = Σ(sb)ℎ − 2
𝑘 ∫

1
0 𝜉 Cov(ℎ(𝒁1,𝜉 ), ℎ(𝒁2,𝜉 )) d𝜉. If Var(ℎ(𝒁)) > 0, we have Σ(𝑘)ℎ < Σ(sb)ℎ

for any 𝑘 ∈ N by Lemma 4.11.4, so in view of Theorem 4.3.2 the bootstrap process
has a smaller asymptotic variance than needed for approximating Ḡ(sb)

𝑛,𝑟 or Ḡ(cb)
𝑛,𝑟 . This

circumstance is one of the main motivations for working with circular block maxima.

In statistical applications, as discussed after Theorem 4.2.3, we do not want to boot-
strap the estimation error of empirical means involving the (unobservable) 𝒁𝑟 ,𝑖, but the
estimation error of general statistics depending on the block maxima 𝑴𝑟 ,𝑖 itself. We fol-
low the general setting of Remark 4.2.4, that is, 𝜽̂𝑛 = 𝝋𝑛(𝑴𝑟 ,1, … ,𝑴𝑟 ,𝑛) is some estimator
of interest for a target parameter 𝜽𝑟 ∈ R𝑝. If similar equations/linearizations as in (4.2.7)
and (4.2.8) can be shown to hold for the (unobservable) circmax-bootstrap counterpart
𝝑̂(cb),∗
𝑛 = 𝝍𝑛(𝒁(cb),∗

1,𝑟 , … , 𝒁(cb),∗
𝑛,𝑟 ), that is, if

𝜽̂(cb),∗𝑛 − 𝜽̂(cb)𝑛 = 𝐴(𝒂𝑟 , 𝒃𝑟)(𝝑̂(cb),∗
𝑛 − 𝝑̂(cb)

𝑛 ), (4.4.3)
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√
𝑛
𝑟
(𝝑̂(cb),∗

𝑛 − 𝝑̂(cb)
𝑛 ) = Ĝ(cb),∗

𝑛,𝑟 (ℎ1, … , ℎ𝑞)⊤ + 𝑜P(1) (4.4.4)

then, loosely speaking, the distributional approximation G(cb)
𝑛,𝑟 𝒉 ≈𝑑 (G(cb),∗

𝑛,𝑟 𝒉 ∣ 𝑛) from
Theorem 4.4.1 carries over to the distributional approximation 𝜽̂(cb)𝑛 − 𝜽𝑟 ≈𝑑 (𝜽̂(cb),∗𝑛 −
𝜽̂(cb)𝑛 ∣ 𝑛). Formally, we have the following result.

Proposition 4.4.4. Fix 𝑘 ∈ N≥2 and assume that Conditions 4.2.1 and 4.2.2 are met. Suppose
𝜽̂(mb)
𝑛 = 𝝋𝑛(𝑴(mb)

𝑟,1 , … ,𝑴(mb)
𝑟,𝑛 ) is some estimator of interest for a target parameter 𝜽𝑟 ∈ R𝑝 such

that (4.2.5), (4.2.6) and (4.2.8) (with Ḡ𝑛,𝑟 = Ḡ(mb)
𝑛,𝑟 ) is met for some function 𝒉 = (ℎ1, … , ℎ𝑞)⊤

satisfying the conditions of Theorem 4.3.2. Moreover, assume that (4.4.3) and (4.4.4) is met.
Then, if Σ(sb)𝒉 is invertible, for mb ∈ {sb, cb},

𝑑𝐾((𝜽̂
(cb),∗
𝑛 − 𝜽̂(cb)𝑛 ∣ 𝑛),(𝜽̂(mb)

𝑛 − 𝜽𝑟)) = 𝑜P(1).

Proof. By Equations (4.2.5), (4.2.6), (4.2.8) and (4.4.3), (4.4.4) we have

𝜽̂(mb)
𝑛 − 𝜽𝑟 = 𝐴(𝒂𝑟 , 𝒃𝑟)

√
𝑟
𝑛(

Ḡ(mb)
𝑛,𝑟 𝒉 + 𝑜P(1)) =∶

√
𝑟
𝑛
𝐴(𝒂𝑟 , 𝒃𝑟)𝑆𝑛,

𝜽̂(cb),∗𝑛 − 𝜽̂(cb)𝑛 = 𝐴(𝒂𝑟 , 𝒃𝑟)
√
𝑟
𝑛(

Ĝ(cb,∗)
𝑛,𝑟 𝒉 + 𝑜P(1)) =∶

√
𝑟
𝑛
𝐴(𝒂𝑟 , 𝒃𝑟)𝑆∗𝑛 .

By Theorems 4.2.3 and 4.3.2 we have 𝑆𝑛 ⇝ 𝑞(𝟎, Σ(sb)𝒉 ). Theorem 4.4.1 implies 𝑑𝐾 ((𝑆∗𝑛 ∣
𝑛),(𝑆𝑛)) = 𝑜P(1). The assertion then follows from Lemma 4.11.9.

The results from Proposition 4.4.4 are sufficient for showing that basic bootstrap con-
fidence intervals (Davison and Hinkley, 1997) asymptotically hold their intended level.
As a proof of concept, details on a specific example are given in the next section, see
Corollary 4.5.6.

4.5 Application: bootstrapping the pseudo-maximum likelihood estimator
for the Fréchet distribution

In this section, we provide details how the previous methods and results can be used
for a specific important estimation problem. More precisely, we consider the univari-
ate heavy tailed case, and restrict attention to the maximum likelihood estimator for
parameters associated with a suitable version of the max-domain of attraction Condi-
tion 4.2.1.

Condition 4.5.1 (Fréchet Max-Domain of Attraction). Let (𝑋𝑡)𝑡∈Z denote a strictly sta-
tionary univariate time series with continuous margins. There exists some 𝛼0 > 0 and
some sequence (𝜎𝑟)𝑟∈N ⊂ (0,∞) such that

lim
𝑟→∞

𝜎⌊𝑟𝑠⌋
𝜎𝑟

= 𝑠1/𝛼0 , (𝑠 > 0) and
max(𝑋1, … , 𝑋𝑟)

𝜎𝑟
⇝ 𝑍 ∼ 𝑃𝛼0,1 (𝑟 → ∞),

where 𝑃𝛼,𝜎 denotes the Fréchet-scale family on (0, ∞) defined by its cdf 𝐹𝛼,𝜎(𝑥) = exp(−(𝑥/𝜎)−𝛼);
here (𝛼, 𝜎) ∈ (0,∞)2.
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Suppose 𝑋1, … , 𝑋𝑛 is an observed sample from (𝑋𝑡)𝑡∈Z as in Condition 4.5.1, and let
𝑟 = 𝑟𝑛 denote a block length parameter. In view of the heuristics and results from
Sections 4.2 and 4.3, the associated block maxima samples (mb)

𝑛,𝑟 with mb ∈ {db, sb, cb}
(with 𝑘 ∈ N fixed) can all be considered approximate samples from 𝑃𝛼0,𝜎𝑟 . As in Bücher
and Segers (2018b,a), this suggests to estimate (𝛼0, 𝜎𝑟) by maximizing the independence
Fréchet-log-likelihood, that is, we define

𝜽̂(mb)
𝑛 ∶= (𝛼̂(mb)

𝑛 , 𝜎̂(mb)
𝑛 )⊤ ∶= argmax

𝜽=(𝛼,𝜎)∈(0,∞)2
∑

𝑀𝑖∈(mb)
𝑛,𝑟

𝓁𝜽(𝑀𝑖 ∨ 𝑐), (4.5.1)

where, for 𝜽 = (𝛼, 𝜎)⊤ ∈ (0,∞)2,

𝓁𝜽(𝑥) = log(𝛼/𝜎) − (𝑥/𝜎)−𝛼 − (𝛼 + 1) log(𝑥/𝜎), 𝑥 > 0, (4.5.2)

denotes the log density of the Fréchet distribution 𝑃(𝛼,𝜎) and where 𝑐 > 0 denotes an
arbitrary truncation constant. For the case mb ∈ {db, sb}, the rescaled estimation error
of 𝜽̂(mb)

𝑛 is known to be asymptotically normal (and independent of 𝑐), that is, under
suitable additional assumptions,

√
𝑛
𝑟 (

𝛼̂(mb)
𝑛 − 𝛼0

𝜎̂(mb)
𝑛 /𝜎𝑟𝑛 − 1)

⇝2(𝝁, Σ(mb)), (4.5.3)

for some 𝝁 ∈ R2 and some Σ(mb) ∈ R2×2 positive definite, see Bücher and Segers (2018b,a).
Subsequently, we will extend these results to mb = cb, and we will derive a consistent
bootstrap scheme for the estimation error.

For fixed 𝑘 ∈ N, consider the circmax-sample (cb)
𝑛,𝑟 . Independent of the observations,

let 𝑾𝑚(𝑘) = (𝑊𝑚(𝑘),1, … ,𝑊𝑚(𝑘),𝑚(𝑘)) = (𝑊1, … ,𝑊𝑚(𝑘)) be multinomially distributed with 𝑚(𝑘)
trials and class probabilities (𝑚(𝑘)−1, … , 𝑚(𝑘)−1). As in Section 4.4, conditional on (cb)

𝑛,𝑟 ,
the bootstrap sample (cb),∗

𝑛,𝑟 is obtained by repeating the observations (𝑀 (cb)
𝑟,𝑠 )𝑠∈𝐼𝑘𝑟,𝑖 from

the 𝑖th 𝑘𝑟-block exactly 𝑊𝑚(𝑘),𝑖-times, for every 𝑖 = 1, … ,𝑚(𝑘). We are going to show that
the independence Fréchet-log-likelihood

𝜽 ↦
𝑛
∑
𝑠=1

𝓁𝜽(𝑀 (cb),∗
𝑟,𝑠 ∨ 𝑐) =

𝑚(𝑘)

∑
𝑖=1

𝑊𝑚(𝑘),𝑖 ∑
𝑠∈𝐼𝑘𝑟,𝑖

𝓁𝜽(𝑀 (cb)
𝑟,𝑠 ∨ 𝑐).

has a unique-maximimizer (with probability converging to one), say (𝛼̂(cb),∗𝑛 , 𝜎̂(cb),∗𝑛 ), and
that the conditional distribution of the rescaled bootstrap-estimation error,

√
𝑛/𝑟(𝛼̂(cb),∗𝑛 −

𝛼̂(cb)𝑛 , 𝜎̂(cb),∗𝑛 /𝜎̂𝑛 − 1), given the observations is close to the distribution of
√
𝑛/𝑟(𝛼̂(mb)

𝑛 −
𝛼0, 𝜎̂(mb)

𝑛 /𝜎𝑟𝑛 − 1) for both mb = sb and mb = cb. We also show how this result can be
used to derive valid asymptotic confidence intervals.

A couple of conditions akin to those imposed in Bücher and Segers (2018b,a) will be
needed.

Condition 4.5.2 (All disjoint block maxima of size ⌊𝑟𝑛/2⌋ diverge). For all 𝑐 > 0, the
probability of the event that all disjoint block maxima of block size 𝑟𝑛 = ⌊𝑟𝑛/2⌋ are larger
than 𝑐 converges to one.
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This is Condition 2.2 in Bücher and Segers (2018a), and guarantees that the prob-
ability of the event that all (blocksize 𝑟𝑛) block maxima in (mb)

𝑛,𝑟 are larger than 𝑐
converges to one as well, for mb ∈ {db, sb, cb}. This will guarantee that the Fréchet-
log-likelihoods under consideration are well-defined, with probability converging to
one. The following condition is Condition 3.4 in Bücher and Segers (2018b); recall that
𝑀𝑟 ,1 = max(𝑋1, … , 𝑋𝑟).

Condition 4.5.3 (Moments). There exists 𝜈 > 2/𝜔 with 𝜔 from Condition 4.2.2 such that

lim sup
𝑟→∞

E[𝑔𝜈,𝛼0((𝑀𝑟 ,1 ∨ 1)/𝜎𝑟)] < ∞,

where 𝑔𝜈,𝛼0(𝑥) ∶= [𝑥
−𝛼0𝟏{𝑥 ≤ 𝑒} + log(𝑥)𝟏{𝑥 > 𝑒}]

2+𝜈
.

Condition 4.5.4 (Bias). There exists 𝑐0 > 0 such that, for 𝑗 ∈ {1, 2, 3}, the limits 𝐶(𝑓𝑗 ) ∶=
lim𝑛→∞ 𝐶𝑛(𝑓𝑗 ) and 𝐶𝑘(𝑓𝑗 ) ∶= lim𝑛→∞ 𝐶𝑛,𝑘(𝑓𝑗 ) exist, where

𝐶𝑛(𝑓𝑗 ) ∶=
√
𝑛
𝑟 (

E [𝑓𝑗((𝑀𝑟 ,1 ∨ 𝑐0)/𝜎𝑟)] − 𝑃𝛼0,1𝑓𝑗)

𝐶𝑛,𝑘(𝑓𝑗 ) ∶=
√
𝑛
𝑟 (

1
𝑟

𝑘𝑟
∑

𝑠=(𝑘−1)𝑟+1

{
E [𝑓𝑗((𝑀𝑟 ,𝑠 ∨ 𝑐0)/𝜎𝑟)] − E [𝑓𝑗((𝑀𝑟 ,1 ∨ 𝑐0)/𝜎𝑟)]

}
)

where 𝑓𝑗 ∶ (0,∞) → R are defined as

𝑓1(𝑥) = 𝑥−𝛼0 , 𝑓2(𝑥) = 𝑥−𝛼0 log 𝑥, 𝑓3(𝑥) = log 𝑥. (4.5.4)

The first part of this condition on 𝐶𝑛 is Condition 3.5 in Bücher and Segers (2018b),
and provides control of the bias for those block maxima which are calculated based on
𝑟 successive observations. For the circmax-sample, the last 𝑟 observations in a 𝑘𝑟-block
of that sample are not of that form; their contribution to the bias is controlled by the
condition on 𝐶𝑛,𝑘.

Subsequently, we fix a truncation constant 𝑐 > 0, and we write

G(cb)
𝑛,𝑟 =

√
𝑛
𝑟 (

P(cb)
𝑛,𝑟 − 𝑃(𝛼0,1)), Ĝ(cb),∗

𝑛 =
√
𝑛
𝑟
(P̂(cb),∗

𝑛,𝑟 − P(cb)
𝑛,𝑟 )

where

P(cb)
𝑛,𝑟 =

1
𝑛

𝑛
∑
𝑠=1

𝛿(𝑀 (cb)
𝑟,𝑠 ∨𝑐)/𝜎𝑟

, P̂(cb),∗
𝑛,𝑟 =

1
𝑛

𝑚(𝑘)

∑
𝑖=1

𝑊𝑚(𝑘),𝑖 ∑
𝑠∈𝐼𝑘𝑟,𝑖

𝛿(𝑀 (cb)
𝑟,𝑠 ∨𝑐)/𝜎𝑟

;

the double use of notation with (4.3.1) and (4.4.1) should not cause any confusion. Fur-
thermore, we suppress the dependence on 𝑐 in the notation, which is motivated by
the fact that the limiting distribution does not depend on 𝑐, as shown in the following
theorem.
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4 Bootstrapping block maxima estimators for time series

Theorem 4.5.5. Fix 𝑘 ∈ N≥2 and 𝑐 > 0, and suppose that Conditions 4.2.2 and 4.5.1–4.5.4 are
satisfied. Then, with probability tending to one, there exists a unique maximizer (𝛼̂(cb)𝑛 , 𝜎̂(cb)𝑛 ) of
the Fréchet log-likelihood 𝜽 ↦ ∑𝑛

𝑖=1 𝓁𝜽(𝑀 (cb)
𝑟,𝑠 ∨ 𝑐), and this maximizer satisfies

√
𝑛
𝑟 (

𝛼̂(cb)𝑛 − 𝛼0
𝜎̂(cb)𝑛 /𝜎𝑟𝑛 − 1)

= 𝑀(𝛼0)G(cb)
𝑛,𝑟 (𝑓1, 𝑓2, 𝑓3)

⊤ + 𝑜P(1)⇝2(𝑀(𝛼0)(𝑪 + 𝑘−1𝑪𝑘), Σ(sb)),

where 𝑪 = (𝐶(𝑓1), 𝐶(𝑓2), 𝐶(𝑓3))⊤, 𝑪𝑘 = (𝐶𝑘(𝑓1), 𝐶𝑘(𝑓2), 𝐶𝑘(𝑓3))⊤ and

𝑀(𝛼0) =
6
𝜋2 (

𝛼20 𝛼0(1 − 𝛾) −𝛼20
𝛾 − 1 −(Γ′′(2) + 1)/𝛼0 1 − 𝛾)

, Σ(sb) =
(
0.4946𝛼20 −0.3236
−0.3236 0.9578𝛼−20 )

with Γ(𝑧) = ∫∞0 𝑡𝑧−1𝑒−𝑡 d𝑡 the Euler Gamma function and 𝛾 = 0.5772… the Euler-Mascheroni
constant.

Moreover, also with probability tending to one, there exists a unique maximizer (𝛼̂(cb),∗𝑛 , 𝜎̂(cb),∗𝑛 )
of 𝜽 ↦ ∑𝑛

𝑠=1 𝓁𝜽(𝑀 (cb),∗
𝑟,𝑠 ∨ 𝑐), and this maximizer satisfies

√
𝑛
𝑟 (

𝛼̂(cb),∗𝑛 − 𝛼̂(cb)𝑛

𝜎̂(cb),∗𝑛 /𝜎̂(cb)𝑛 − 1)
= 𝑀(𝛼0)Ĝ(cb),∗

𝑛,𝑟 (𝑓1, 𝑓2, 𝑓3)⊤ + 𝑜P(1)⇝2(0, Σ(sb)).

Fix mb ∈ {sb, cb}. If 𝑟𝑛 is chosen sufficiently large such that, for 𝑗 ∈ {1, 2, 3}, 𝐶(𝑓𝑗 ) = 0 (mb = sb)
or 𝐶(𝑓𝑗 ) = 𝐶𝑘(𝑓𝑗 ) = 0 (mb = cb) in Condition 4.5.4, we have bootstrap consistency in the
following sense:

𝑑𝐾[(

√
𝑛
𝑟 (

𝛼̂(cb),∗𝑛 − 𝛼̂(cb)𝑛

𝜎̂(cb),∗𝑛 /𝜎̂(cb)𝑛 − 1)
|||𝑛),

√
𝑛
𝑟 (

𝛼̂(mb)
𝑛 − 𝛼0

𝜎̂(mb)
𝑛 /𝜎𝑟𝑛 − 1)] = 𝑜P(1).

The result in Theorem 4.5.5 allows for statistical inference on the parameters 𝛼0, 𝜎𝑟 ,
for instance in the form of confidence intervals. We provide details on 𝜎𝑟 , using the
circular block bootstrap approximation to the sliding block estimator: for 𝛽 ∈ (0, 1), let
𝑞𝜎̂∗𝑛 (𝛽) denote the 𝛽-quantile of the conditional distribution of 𝜎̂(cb),∗𝑛 given the data, that
is, 𝑞𝜎̂∗𝑛 (𝛽) = (𝐹𝜎̂∗𝑛 )

−1(𝛽), where 𝐹𝜎̂∗𝑛 (𝑥) = P(𝜎̂(cb),∗𝑛 ≤ 𝑥 ∣ 𝑛) for 𝑥 ∈ R. Note that the quan-
tile may be approximated to an arbitrary precision by repeated bootstrap sampling.
Consider the basic bootstrap confidence interval (Davison and Hinkley, 1997)

𝐼 (sb,cb)𝑛,𝜎 (1 − 𝛽) = [2𝜎̂(sb)𝑛 − 𝑞𝜎̂∗𝑛 (1 −
𝛽
2 ), 2𝜎̂

(sb)
𝑛 − 𝑞𝜎̂∗𝑛 (

𝛽
2 )].

Corollary 4.5.6. Under the conditions of Theorem 4.5.5 with 𝑟𝑛 chosen sufficiently large such
that, for 𝑗 ∈ {1, 2, 3}, 𝐶(𝑓𝑗 ) = 0 in Condition 4.5.4, we have, for any 𝛽 ∈ (0, 1),

lim
𝑛→∞

P(𝜎𝑟𝑛 ∈ 𝐼
(sb,cb)
𝑛,𝜎 (1 − 𝛽)) = 1 − 𝛽.

The above result only concerns the sliding block maxima estimator, but an analogous
result can be derived for the disjoint block maxima estimator and under additional bias
conditions for the circmax estimator. In view of the fact that the disjoint block maxima
estimator exhibits a larger asymptotic estimation variance, the width of the disjoint
blocks confidence interval is typically larger than the one of the circmax method, for
every fixed confidence level (for an empirical illustration, see Figure 4.8 for the related
problem of providing a confidence interval for the shape parameter 𝛼).

76



4.6 Simulation study

4.6 Simulation study

The finite-sample properties of the circmax estimators and of the bootstrap approaches
have been investigated in a large scale Monte-Carlo simulation study. Two asymptotic
regimes were considered: first, the case where the block size 𝑟 is fixed and the number
of disjoint blocks is increasing, and second, the case where 𝑛 is fixed and the block size
is treated as a tuning parameter. All performance metrics in the subsequent paragraphs
have been empirically approximated based on 𝑁 = 5, 000 simulation repetitions.

4.6.1 Fixed block size

Throughout, we fix the block size 𝑟 , and consider the estimation of target parameters
associated with the law of 𝑴𝑟 , as well as bootstrap approximations for the respective
estimation error. For illustrative purposes, we restrict attention to the one dimensional
case and the most vanilla target parameter: the expected value 𝜇𝑟 = E[𝑀𝑟 ] of the block
maximum distribution. The respective disjoint, sliding and circular block maxima esti-
mators are 𝜇̂(mb)

𝑛 ∶= 𝑛−1∑𝑛
𝑖=1𝑀

(mb)
𝑟,𝑖 with mb ∈ {db, sb, cb(2), cb(3)}, where cb(𝑘) denotes the

circmax estimator with parameter 𝑘 ∈ {2, 3}. The finite-sample performance is assessed
for the following time series model.

Model 4.6.1 (ARMAX-GPD-Model). (𝑋𝑡)𝑡∈Z is a stationary real-valued time series whose
stationary distribution is the generalized Pareto distribution GPD(0, 1, 𝛾) with c.d.f.

𝐹𝛾(𝑥) ∶=

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

(1 − (1 + 𝛾𝑥)−1/𝛾)1(𝑥 ≥ 0), 𝛾 > 0,

(1 − (1 + 𝛾𝑥)−1/𝛾)1(0 ≤ 𝑥 ≤ −1/𝛾), 𝛾 < 0,

(1 − exp(−𝑥))1(𝑥 ≥ 0), 𝛾 = 0.

After transformation to the Fréchet(1)-scale, the temporal dynamics correspond to the
ARMAX(1)-model (Example 10.3 in Beirlant et al., 2004). More precisely, the time series
(𝑌𝑡)𝑡 with 𝑌𝑡 = 𝐹←𝑊 (𝐹𝛾(𝑋𝑡)) satisfies the recursion

𝑌𝑡 = max (𝛽𝑌𝑡−1, (1 − 𝛽)𝑊𝑡) ∀𝑡 ∈ Z (4.6.1)

for an i.i.d. sequence (𝑊𝑡)𝑡∈Z of Fréchet(1)-distributed random variables and some 𝛽 ∈
[0, 1); here, 𝐹𝑊 denotes the c.d.f. of a Fréchet(1) distributed random variable and 𝐹←

denotes the generalised inverse of 𝐹 . Throughout the simulation study, we consider the
choices 𝛽 = 0 (iid case) and 𝛽 = 0.5 combined with 𝛾 ∈ {−0.2, 0, 0.2}, giving a total of six
different models.

Note in passing that (𝑋𝑡)𝑡 from Model 4.6.1 is exponentially beta mixing and satisfies
Condition 4.2.1 with 𝑍 ∼ GEV(𝛾), 𝑎𝑟 = {𝑟(1 − 𝛽)}𝛾 and 𝑏𝑟 = {𝑟(1 − 𝛽)𝛾 − 1}/𝛾 . Moreover, the
mean and variance of 𝑀𝑟 exist for 𝛾 < 1 and 𝛾 < 1/2, respectively, and in the latter case
an application of Theorems 4.2.3 and 4.3.2 shows that, for 𝑟 = 𝑟𝑛 → ∞ such that 𝑟 = 𝑜(𝑛)
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and log(𝑛) = 𝑜(𝑟1/2),
√
𝑛/𝑟

(𝑟(1 − 𝛽))𝛾 (
𝜇̂(mb)
𝑛 − 𝜇𝑟)⇝ (0, 𝜎2mb), mb ∈ {db, sb, cb(2), cb(3)},

where the asymptotic variance is given by

𝜎2db =
⎧⎪⎪
⎨⎪⎪⎩

𝑔2−𝑔21
𝛾2 , 𝛾 < 1/2, 𝛾 ≠ 0,

𝜋2

6 , 𝛾 = 0,
𝜎2cb(𝑘) = 𝜎2sb =

⎧⎪⎪⎪⎪
⎨⎪⎪⎪⎪⎩

4Γ(−2𝛾)𝐼 (𝛾), 𝛾 < 0,

4(log 4 − 1), 𝛾 = 0,

− 𝑔2
𝛾 𝐼 (𝛾) 0 < 𝛾 < 1/2.

(4.6.2)

Here, Γ denote the gamma function, 𝑔𝑗 = Γ(1− 𝑗𝛾) and 𝐼 (𝛾) ∶= 2 ∫ 1/20 {𝛼2𝛾(𝑤)− 1}{𝑤−𝛾−1(1 −
𝑤)−𝛾−1} d𝑤 with 𝛼𝑐(𝑤) = 𝑤−1 ∫𝑤0 (1 − 𝑧)

𝑐 d𝑧. Details are provided in Section 4.12.1.
For the simulation experiments, the block size was fixed to 𝑟 = 90 as it roughly corre-

sponds to the number of days within a season - a common block size in environmental
applications. The effective sample size (i.e., the number of disjoint blocks of size 𝑟 , ab-
breviated by 𝑚 = ⌊𝑛/𝑟⌋ hereafter) has been varied between 50 and 100 resulting in total
sample sizes 𝑛 between 4, 500 and 9, 000.

Performance of the estimators. We start by comparing the four estimators in terms
of their variance, squared bias and mean squared error (MSE). For assessing the bias,
the true first moment 𝜇𝑟 was approximated by a preliminary Monte Carlo simulation
based on 106 independent block maxima from Model 4.6.1 with block size 𝑟 = 90. The re-
sults are summarized in Figure 4.2. As suggested by the theory, both the sliding blocks
estimator and the two circular blocks estimators perform uniformly better than the re-
spective disjoint blocks estimator. The improvement gets smaller as the observations
are getting more heavy-tailed; a phenomenon that has already been observed in the lit-
erature; see e.g. Bücher and Zanger (2023), Bücher and Staud (2024b). It is noteworthy
that the additional bias effect introduced in the circular blocks estimators does not con-
tribute in a relevant way; its contribution to the overall MSE was found to be at most
0.2% and often much smaller. Furthermore, the serial dependence does not change the
qualitative results significantly.

Performance of the bootstrap. We consider each of the bootstrap estimators 𝜇̂(mb),∗
𝑛 with

mb ∈ {db, sb, cb(2), cb(3)}, with number of bootstrap replications set to 𝐵 = 1, 000. Recall
that our results from the previous sections imply that the conditional bootstrap estima-
tion errors 𝜇̂(cb(2)),∗𝑛 − 𝜇̂(cb(2))𝑛 and 𝜇̂(cb(3)),∗𝑛 − 𝜇̂(cb(3))𝑛 are consistent for the estimation error
𝜇̂(sb)𝑛 − 𝜇𝑟 , that 𝜇̂(db),∗𝑛 − 𝜇̂(db)𝑛 is consistent for 𝜇̂(db)𝑛 − 𝜇𝑟 and that 𝜇̂(sb),∗𝑛 − 𝜇̂(sb)𝑛 is inconsistent
for 𝜇̂(sb)𝑛 − 𝜇𝑟 . All four statements are illustrated in Figure 4.3 by means of QQ-plots and
histograms for the parameter choice 𝛾 = −0.2, 𝛽 = 0.5 and 𝑚 = 80; other choices lead to
similar results.

In the next step, we evaluate the performance of the four bootstrap approaches in
terms of their ability to provide accurate estimates of the estimation variance 𝜎2mb(𝑟) =
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Figure 4.2: Mean estimation with fixed block size 𝑟 = 90. Top three rows: Mean squared
error MSE(𝜇̂(mb)

𝑛 ). Bottom three rows: relative MSE with respect to the dis-
joint blocks method, i.e., MSE(𝜇̂(mb)

𝑛 )/MSE(𝜇̂(db)𝑛 ).

Var(𝜇̂(mb)
𝑛 ) with mb ∈ {db, sb}. For that purpose, for each fixed sample of size 𝑛, we esti-

mate the respective variance by the empirical variance of the sample of bootstrap esti-
mates; recall that each such sample is of size 𝐵 = 1, 000, for every mb ∈ {db, sb, cb(2), cb(3)}.
In Figure 4.4, we depict the average over the 𝑁 = 5, 000 bootstrap estimates, along with
the true parameters determined in a presimulation based on 106 repetitions. We observe
that the bootstrap estimates are close to the their target values for the disjoint method
and for both circmax methods, while the naive sliding blocks bootstrap underestimates
the true variance substantially, as mathematically demonstrated in Remark 4.4.3.

Finally, we evaluate the performance of the bootstrap approaches in terms of their
ability to provide accurate confidence intervals of pre-specified coverage; clearly, smaller
intervals of similar coverage would be preferable. For that purpose, we restrict our-
selves to the basic bootstrap confidence interval (Davison and Hinkley, 1997) as illus-
trated in Corollary 4.5.6. The empirical coverage and the average widths of the re-
spective intervals are depicted in Figure 4.5, where we omit the naive sliding method
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𝑛 )

with fixed block size 𝑟 = 90. Left two columns: mb = sb; the dashed line
corresponds to 𝜎2sb(𝑟). Right two columns: mb = db; the dashed line corre-
sponds to 𝜎2db(𝑟).
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Figure 4.5: Basic bootstrap confidence intervals for 𝜇𝑟 with fixed block size 𝑟 = 90.
Top three rows: empirical coverage with intended coverage of 95% (dashed
line). Bottom three rows: relative average width with respect to the disjoint
method, i.e., width(CI(db))/width(CI(mb)).

because of its inconsistency. We find that in most scenarios the desired coverage is al-
most reached by any method, in particular for lighter tail behavior. The disjoint blocks
approach has the best coverage overall, albeit with only minimal advantages and some-
times on a par with or even slightly worse than the cb(2)-method. However, the price
for this is universally wider confidence intervals.

4.6.2 Fixed total sample size

In a second experiment, we consider the estimation of target parameters associated
with the limiting law of 𝑴𝑟 for 𝑟 → ∞, as well as bootstrap approximations for the re-
spective estimation errors. For illustrative purposes, we restrict attention to the univari-
ate, heavy tailed case and the estimation of the shape parameter 𝛼 by pseudo-maximum
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Figure 4.6: Mean squared error for the estimation of 𝛼 with fixed sample size 𝑛 = 1, 000.

likelihood estimation, as extensively discussed in Section 4.5.

Model 4.6.2 (ARMAX-Pareto-Model). (𝑋𝑡)𝑡∈Z is a stationary, positive time series whose
stationary distribution is the Pareto(𝛼) distribution for some 𝛼 > 0, defined by its cdf
𝐹𝛼(𝑥) = 1 − 𝑥−𝛼 for 𝑥 > 1. After transformation to the Fréchet(1)-scale, the temporal dy-
namics correspond to the ARMAX(1)-model with parameter 𝛽 ∈ [0, 1); see Model 4.6.1
for details. Throughout, we consider the six models defined by the combinations of
𝛼 ∈ {0.5, 1, 1.5} and 𝛽 ∈ {0.0.5}.

For the simulation experiment, we fix the total sample size to 𝑛 = 1, 000, and treat
the block size 𝑟 as a variable tuning parameter akin to the choice of 𝑘 in the peak-
over-threshold method. More precisely, we consider choices of 𝑟 ranging from 8 to 40,
resulting in effective sample sizes 𝑚 = 𝑛/𝑟 ranging from 125 to 25.

Performance of the estimators. In Figure 4.6 we depict the MSE of 𝛼̂(mb)
𝑛 from Section

4.5 with mb ∈ {db, sb, cb(2), cb(3)} as a function of the effective sample size 𝑚 = 𝑛/𝑟 . For
𝛽 = 0.5, we observe the typical bias-variance tradeoff resulting in a u-shaped MSE-
curve: the larger the effective sample size, the smaller the variance and the larger the
bias (for 𝛽 = 0, the MSE is dominated by the variance even for block sizes as small as 8).
Apart from that, the findings are similar to the previous results for the case where 𝑟 was
fixed: the sliding and circular block maxima estimator perform remarkably similar (in
particular, the additional bias in the circular maxima is irrelevant), and they uniformly
outperform the disjoint blocks estimator across all models under consideration.

Performance of the bootstrap. Next, we consider each of the bootstrap estimators
𝛼̂(mb),∗
𝑛 with mb ∈ {db, sb, cb(2), cb(3)}, with number of bootstrap replications set to 𝐵 =

1, 000. Similar as in Section 4.6.1, we start by evaluating the performance of the four
bootstrap approaches in terms of their ability to provide accurate estimates of the es-
timation variance 𝜎2mb(𝑟) = Var(𝛼̂(mb)

𝑛 ) with mb ∈ {db, sb}. In Figure 4.7, we depict the
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Figure 4.7: Bootstrap-based estimation of the estimation variance 𝜎2mb(𝑟) = Var(𝛼̂(mb)
𝑛 )

with fixed sample size 𝑛 = 1, 000. Left two columns: mb = sb; the dashed
line corresponds to 𝜎2sb(𝑟). Right two columns: mb = db; the dashed line
corresponds to 𝜎2db(𝑟).

average over the 𝑁 = 5, 000 bootstrap estimates, along with the true parameters deter-
mined in a presimulation based on 106 repetitions. The findings are akin to those in
Section 4.6.1, the only additional remarkable observation being that the disjoint blocks
method tends to overestimate the variance parameter in the iid case, in particular for
large block sizes.

Finally, we evaluate the performance of the bootstrap approaches in terms of their
ability to provide accurate (basic bootstrap) confidence intervals of pre-specified cov-
erage. The empirical coverage and the average widths of the respective intervals are
depicted in Figure 4.8, where we omit the naive sliding method because of its incon-
sistency. We find that in most scenarios the desired coverage is almost reached by any
method (observed coverage ≥ 92%), as long as the block size is not too small. Overall,
the disjoint blocks method has clearly the best coverage, often reaching the intended
level exactly (possibly because of the overestimation of the variance parameter ob-
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Figure 4.8: Basic bootstrap confidence intervals for 𝛼 with fixed sample size 𝑛 = 1, 000.
Top three rows: empirical coverage with intended coverage of 95% (dashed
line). Bottom three rows: relative average width with respect to the disjoint
method, i.e., width(CI(db))/width(CI(mb)).

served in Figure 4.6). The observed qualitative behavior may further be explained by
the fact that the target parameter is an asymptotic parameter, such that both the sliding
and the disjoint blocks method provide bias estimates (with the same asymptotic bias).
Smaller confidence intervals for the circmax-methods hence necessarily imply a smaller
coverage because they are concentrated around a biased estimate.

4.7 Case study

We consider daily accumulated precipitation amounts at a German weather station in
Hohenpeißenberg, in the 145 year period from 1879 to 2023, resulting in 52, 960 daily ob-
servations in total.1 As a target parameter, we consider the expected yearly maximum
precipitation (Rx1day), which corresponds to a block size of 𝑟 = 365. To account for pos-
sible non-stationarities in the target parameter over such a long observation period, we
conduct the subsequent analyses on moving windows of 40 years. More precisely, for

1A maximum likelihood fit of the GEV-distribution to the entire sample of 145 annual maxima shows
that the data are slightly heavy-tailed, with an estimated shape parameter of 𝛾̂ ≈ 0.11
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Figure 4.9: Left plot: estimated expected annual maximum precipitation based on
disjoint and sliding blocks estimators 𝜇(db)𝑛 , 𝜇(sb)𝑛 (solid lines), alongside
with with 95% bootstrap confidence intervals based on the db- and cb(2)-
bootstrap, respectively (for a moving window of 40 years). Right plot: width
of the respective confidence interval. All curves have been smoothed by a
moving average filter of size 2.

each fixed 40-year window 𝑤, the target parameter may be written as 𝜇(𝑤) = E[𝑀365(𝑤)],
where 𝑀365(𝑤) denotes a generic annual maximum variable corresponding to the cli-
mate over the 40 years under consideration.

Each moving window 𝑤 contains approximately 𝑛 = 14, 600 daily observations, and
the target parameter is estimated using the disjoint and sliding blocks estimator 𝜇̂(mb)

𝑛 =
𝜇̂(mb)
𝑛 (𝑤) with mb ∈ {db, sb}. Basic bootstrap confidence intervals are constructed by ei-

ther the classical approach based on resampling the disjoint block maxima (for estima-
tor 𝜇̂(db)𝑛 ), or by the circular block bootstrap approach with 𝑘 = 2 (for estimator 𝜇̂(sb)𝑛 ). The
resulting estimates and confidence bands are presented in Figure 4.9. The years on the
x-axis correspond to the endpoints of the 40-year window. As expected from the the-
ory (see in particular Figure 4.10), we find that the confidence intervals for the sliding
blocks estimator are universally smaller than those for the disjoint blocks counterpart,
with the average relative width being approximately 1.07.

4.8 Conclusion

Both the block-maxima method and the bootstrap are time-honored statistical methods
that have seen wide use in applied statistics for extremes. Surprisingly, bootstrap con-
sistency has never been proven, not even for the classical block-maxima method based
on disjoint blocks. In this paper, respective consistency statements were established
under high-level conditions on the data-generating process. A new approach, called
the circular block-maxima method, has been proposed to allow for valid and computa-
tionally efficient bootstrap inference regarding the sliding block maxima method. The
approach may be of independent interest for extreme-value analysis of non-stationary
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4 Bootstrapping block maxima estimators for time series

extremes, for instance in the presence of a temporal trend. Indeed, a reasonable model
assumption inspired by many applications of the disjoint block maxima method would
consist of the assumption that the circular block-maxima within a fixed 𝑘𝑟-block of
observations, say the 𝑖th one, follow an extreme-value distribution whose distribu-
tion/parameters are depending on 𝑖. Respective methods could be studied mathemat-
ically under a suitable triangular array structure, and we conjecture that advantages
over the disjoint block maxima method will eventually show up in respective estima-
tion variances. Other possible extensions would be the inclusion of inner-seasonal non-
stationarities in the data-generating process or the generalization to empirical processes
indexed by non-finite function classes.

4.9 Proofs

Proof of Theorem 4.3.2. Throughout, we omit the upper index (cb). We start by showing
that

lim
𝑛→∞

Cov(Ḡ𝑛,𝑟𝒉) = Σ(sb)𝒉 . (4.9.1)

By elementary arguments, it is sufficient to consider the case 𝑞 = 1. For 𝑖 ∈ {1, … , 𝑚(𝑘)}
write

𝐷𝑛,𝑖 =
1
𝑘𝑟

∑
𝑠∈𝐼𝑘𝑟,𝑖

{
ℎ(𝒁𝑟 ,𝑠) − E[ℎ(𝒁𝑟 ,𝑠)]

}
, (4.9.2)

such that Ḡ𝑛,𝑟ℎ𝑗 =
√ 𝑛

𝑟𝑚(𝑘)
−1∑𝑚(𝑘)

𝑖=1 𝐷𝑛,𝑖. By stationarity and 𝑛/𝑟 = 𝑘𝑚(𝑘), we have

Var (Ḡ𝑛,𝑟ℎ) = 𝑘 Var(𝐷𝑛,1) + 𝑟𝑛1 + 𝑟𝑛2, (4.9.3)

where 𝑟𝑛1 = 2𝑘(1− 1
𝑚(𝑘) ) Cov(𝐷𝑛,1, 𝐷𝑛,2) and 𝑟𝑛2 = 2𝑘∑𝑚(𝑘)−1

𝑑=2 (1− 𝑑
𝑚(𝑘) ) Cov(𝐷𝑛,1, 𝐷𝑛,1+𝑑). Thus,

the proof of (4.9.1) is finished once we show that

lim
𝑛→∞

𝑘 Var(𝐷𝑛,1) = Σ(sb)ℎ , lim
𝑛→∞

𝑟𝑛1 = 0, lim
𝑛→∞

𝑟𝑛2 = 0. (4.9.4)

We start with the former, and for that purpose we define, for 𝜉 , 𝜉 ′ ∈ [0, 𝑘),

𝑓𝑟(𝜉 , 𝜉 ′) ∶= Cov (ℎ(𝒁𝑟 ,1+⌊𝑟𝜉⌋), ℎ(𝒁𝑟 ,1+⌊𝑟𝜉 ′⌋)),

𝑔(𝑘)(𝜉 , 𝜉 ′) ∶= Cov (ℎ(𝒁
(1)
|𝜉−𝜉 ′ |,(𝑘)), ℎ(𝒁

(2)
|𝜉−𝜉 ′ |,(𝑘))),

𝑔(𝜉 , 𝜉 ′) ∶= Cov (ℎ(𝒁
(1)
|𝜉−𝜉 ′ |), ℎ(𝒁

(2)
|𝜉−𝜉 ′ |)),

where (𝒁(1)
|𝜉−𝜉 ′ |,(𝑘), 𝒁

(2)
|𝜉−𝜉 ′ |,(𝑘)) has cdf 𝐺(𝑘)

|𝜉−𝜉 ′ | from (4.11.1) and where (𝒁(1)
|𝜉−𝜉 ′ |, 𝒁

(2)
|𝜉−𝜉 ′ |) has cdf

𝐺|𝜉−𝜉 ′ | from (4.2.3). Observe that, by Proposition 4.11.1, Condition 4.10.1 and Example
2.21 in van der Vaart (1998), lim𝑛→∞ 𝑓𝑟(𝜉 , 𝜉 ′) = 𝑔(𝑘)(𝜉 , 𝜉 ′). Hence, by Condition 4.10.1 and
Dominated Convergence

𝑘 Var(𝐷𝑛,1) =
1
𝑘𝑟2

𝑘𝑟
∑
𝑠=1

𝑘𝑟
∑
𝑡=1

Cov [ℎ(𝒁𝑟 ,𝑠), ℎ(𝒁𝑟 ,𝑡)] =
1
𝑘 ∫

𝑘

0
∫
𝑘

0
𝑓𝑟(𝜉 , 𝜉 ′) d𝜉 ′ d𝜉
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=
1
𝑘 ∫

𝑘

0
∫
𝑘

0
𝑔(𝑘)(𝜉 , 𝜉 ′) d𝜉 ′ d𝜉 + 𝑜(1). (4.9.5)

Now let 𝑢(𝑥) ∶= 𝑔(𝑥, 0) and note that 𝑔(𝜉, 𝜉 ′) = 𝑢(|𝜉 − 𝜉 ′|) and that 𝑢(𝑥) = 0 for 𝑥 > 1. By
the definition of 𝐺(𝑘)

|𝜉−𝜉 ′ | in (4.11.1) we have 𝐺(𝑘)
|𝜉−𝜉 ′ | = 𝐺|𝜉−𝜉 ′ | if 0 ≤ |𝜉 − 𝜉 ′| ≤ 𝑘 − 1, which also

implies that 𝑔(𝑘)(𝜉 , 𝜉 ′) = 𝑔(𝑘)(|𝜉 − 𝜉 ′|, 0) = 𝑔(|𝜉 − 𝜉 ′|, 0) = 𝑢(|𝜉 − 𝜉 ′|) for 𝜉 ≤ 𝑘 − 1. Therefore,

∫
𝑘

0
∫
𝑘

𝜉
𝑔(𝑘)(𝜉 , 𝜉 ′) d𝜉 ′ d𝜉 = ∫

𝑘

0
∫
𝑘∧(𝜉+𝑘−1)

𝜉
𝑢(𝜉 ′ − 𝜉) d𝜉 ′ d𝜉 + ∫

1

0
∫
𝑘

𝜉+𝑘−1
𝑔(𝑘)(𝜉 ′ − 𝜉, 0) d𝜉 ′ d𝜉

= ∫
𝑘

0
∫
𝑘∧(𝜉+1)

𝜉
𝑢(𝜉 ′ − 𝜉) d𝜉 ′ d𝜉 + ∫

1

0
∫
𝑘

𝑘−1+𝜉
𝑔(𝑘)(𝜉 ′ − 𝜉, 0) d𝜉 ′ d𝜉, (4.9.6)

where we used that 𝑢(𝑥) = 0 for 𝑥 > 1 at the second equality. After substituting 𝑥 = 𝜉 ′ −𝜉
in the inner integral and noting that ∫ 10 𝑢(𝑥) d𝑥 = Σ(sb)ℎ /2, the first integral on the right-
hand side of (4.9.6) can be written as

∫
𝑘

0
∫
𝑘∧(𝜉+1)

𝜉
𝑢(𝜉 ′ − 𝜉) d𝜉 ′ d𝜉 = ∫

𝑘

0
∫

(𝑘−𝜉)∧1

0
𝑢(𝑥) d𝑥 d𝜉 = ∫

𝑘−1

0
∫

1

0
𝑢(𝑥) d𝑥 d𝜉 + ∫

𝑘

𝑘−1
∫
𝑘−𝜉

0
𝑢(𝑥) d𝑥 d𝜉

= (𝑘 − 1)
Σ(sb)ℎ
2

+ ∫
1

0
∫
𝑦

0
𝑢(𝑥) d𝑥 d𝑦,

where we used the substitution 𝑦 = 𝑘 − 𝜉 in the last step. Moreover, substituting 𝑥 =
𝑘 − 𝜉 ′ + 𝜉 in the inner integral, the second integral on the right-hand side of (4.9.6) can
be written as

∫
1

0
∫
𝑘

𝑘−1+𝜉
𝑔(𝑘)(𝜉 ′ − 𝜉, 0) d𝜉 ′ d𝜉 = ∫

1

0
∫

1

𝜉
𝑔(𝑘)(𝑘 − 𝑥, 0) d𝑥 d𝜉 = ∫

1

0
∫

1

𝜉
𝑢(𝑥) d𝑥 d𝜉,

where we used that 𝑔(𝑘)(𝑘 − 𝑥, 0) = 𝑢(𝑥) for 𝑥 ∈ [0, 1] by the definition of 𝐺(𝑘)
𝑘−𝑥 . Overall,

again using that ∫ 10 𝑢(𝑥) d𝑥 = Σ(sb)ℎ /2, the previous three displays imply that

∫
𝑘

0
∫
𝑘

𝜉
𝑔(𝑘)(𝜉 , 𝜉 ′) d𝜉 ′ d𝜉 = 𝑘

Σ(sb)ℎ
2

.

This implies (4.9.4) in view of the symmetry ∫ 𝑘0 ∫
𝑘
𝜉 𝑔(𝑘)(𝜉 , 𝜉

′) d𝜉 ′ d𝜉 = ∫ 𝑘0 ∫
𝜉
0 𝑔(𝑘)(𝜉 , 𝜉

′) d𝜉 ′ d𝜉
and (4.9.5).

Similar arguments as before, invoking asymptotic independence of 𝒁𝑟 ,𝑠 and 𝒁𝑟 ,𝑡 for
𝑠 ∈ 𝐼𝑘𝑟,1 and 𝑡 ∈ 𝐼𝑘𝑟,2 (see Proposition 4.11.1) and a similar identification of the covariances
as integrals, imply that 𝑟𝑛1 = 𝑜(1). Finally, by Conditions 4.2.2(c) and 4.10.1 and Lemma
3.11 in Dehling and Philipp (2002) we obtain

|𝑟𝑛2|
𝑘
≲ 𝑚(𝑘)𝛼(𝑘𝑟)𝜈/(2+𝜈) ≲ ((

𝑛
𝑟 )

1+2/𝜈
𝛼(𝑘𝑟))

𝑣/(2+𝜈)
= 𝑜(1),

since 2/𝜔 < 𝜈, where we have used that there is a lag of at least 𝑘𝑟 between the observa-
tions making up 𝐷𝑛,1 and 𝐷𝑛,1+𝑑 . Overall, we have shown all three assertions in (4.9.4),
and hence the proof of (4.9.1) is finished.
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4 Bootstrapping block maxima estimators for time series

To verify the asymptotic normality, by the Cramér-Wold Theorem, it is again suf-
ficient consider the case 𝑞 = 1. Recalling that Ḡ𝑛,𝑟ℎ is centered, the case Σ(sb)ℎ = 0
follows from (4.9.1); thus assume Σ(sb)ℎ > 0. Following Bücher and Segers (2018a), we
use a suitable blocking technique. Choose 𝑚∗ = 𝑚∗

𝑛 ∈ N with 3 ≤ 𝑚∗ ≤ 𝑚(𝑘) such
that 𝑚∗ → ∞ and 𝑚∗ = 𝑜((𝑛/𝑟)𝜈/(2(1+𝜈))) with 𝜈 from Condition 4.10.1. Next, define
𝑝 ∶= 𝑝𝑛 ∶= 𝑚(𝑘)/𝑚∗ and assume for simplicity that 𝑝 ∈ N, 𝑛/𝑟 ∈ N. Furthermore, let
𝐽+𝑗 ∶= {(𝑗 − 1)𝑚∗ + 1,… , 𝑗𝑚∗ − 1}, 𝐽−𝑗 ∶= {𝑗𝑚∗} and note that |𝐽+𝑗 | = (𝑚∗ − 1). Then,

Ḡ𝑛,𝑟ℎ =
1
√𝑝

𝑝

∑
𝑗=1

(𝑆+𝑛,𝑗 + 𝑆
−
𝑛,𝑗 ), where 𝑆±𝑛,𝑗 ∶=

√
𝑛𝑝
𝑟

1
𝑚(𝑘)

∑
𝑖∈𝐽±𝑗

𝐷𝑛,𝑖 (4.9.7)

with 𝐷𝑛,𝑖 from (4.9.2). Noticing that the time series (𝑆−𝑛,𝑗 )𝑗 is stationary, we have

Var (
1
√𝑝

𝑝

∑
𝑗=1

𝑆−𝑛,𝑗) ≤ 3Var(𝑆−𝑛,1) +
𝑝−1

∑
𝑑=2

| Cov(𝑆−𝑛,1, 𝑆
−
𝑛,1+𝑑)| =∶ 𝑟𝑛3 + 𝑟𝑛4.

By Conditions 4.2.2(a) and 4.10.1 we have 𝑟𝑛3 = 𝑂(1/𝑚∗) = 𝑜(1). Furthermore, by Con-
dition 4.10.1 and Lemma 3.11 from Dehling and Philipp (2002) with 𝑠 = 𝑟 = 1/(2 + 𝜈)
and 𝑡 = 𝜈/(2 + 𝜈), we have sup𝑑≥2 | Cov(𝑆−𝑛,1, 𝑆−𝑛,1+𝑑)| ≲ 10𝑘(𝑚∗)−1𝛼𝜈/(2+𝜈)(𝑘𝑟), whence 𝑟𝑛4 ≲
𝑟−1𝑛(𝑚∗)−2𝛼𝜈/(2+𝜈)(𝑘𝑟) = 𝑜((𝑚∗)−2) = 𝑜(1) by Condition 4.2.2 and the fact that 2/𝜈 < 𝜔. Put
together, in view of E[𝑆−𝑛,𝑗 ] = 0, these convergences imply 𝑝−1/2∑𝑝

𝑗=1 𝑆−𝑛,𝑗 = 𝑜P(1).
As there is a lag of at least 𝑘𝑟 between the observations making up 𝑆+𝑛,𝑗1 and 𝑆+𝑛,𝑗2 for 𝑗1 ≠

𝑗2 a standard argument involving characteristic functions, a complex-valued version of
Lemma 3.9 in Dehling and Philipp (2002), Condition 4.2.2 (b) and Levy’s Continuity
Theorem allows for assuming that the (𝑆+𝑛,𝑗 )𝑗 are independent. Hence, we may sub-
sequently apply Lyapunov’s central limit theorem. To verify its conditions, note that,
since Var(𝑝−1/2∑𝑝

𝑗=1 𝑆−𝑛,𝑗 ) = 𝑜(1) and by using (4.9.1) and (4.9.7), Var(𝑝−1/2∑𝑝
𝑗=1 𝑆+𝑛,𝑗 ) =

Var(Ḡ𝑛,𝑟ℎ) + 𝑜(1) = Σ(sb)ℎ + 𝑜(1). Hence,

∑𝑝
𝑗=1 E[||𝑆

+
𝑛,𝑗
||
2+𝜈]

{Var(∑𝑝
𝑗=1 𝑆+𝑛,𝑗 )}1+𝜈/2

≲
𝑝(𝑛𝑝/𝑟)1+𝜈/2(𝑚∗/𝑚(𝑘))2+𝜈

(𝑝𝜎2/2)1+𝜈/2
≲

(𝑚∗)1+𝜈

(𝑛/𝑟)𝜈/2
= 𝑜(1),

by Condition 4.10.1 and the choice of 𝑚∗. An application of Lyapunov’s central limit
theorem implies the assertion.

To prove the additional weak convergences note that

G̃(cb)
𝑛,𝑟 ℎ = Ḡ(cb)

𝑛,𝑟 ℎ +
√
𝑛
𝑟
(𝑃 (cb)𝑛,𝑟 − 𝑃𝑟)ℎ, G(cb)

𝑛,𝑟 ℎ = Ḡ(cb)
𝑛,𝑟 ℎ +

√
𝑛
𝑟
(𝑃 (cb)𝑛,𝑟 − 𝑃𝑟 + 𝑃𝑟 − 𝑃)ℎ.

Denote by (𝑿̃𝑡)𝑡 an independent copy of (𝑿𝑡)𝑡 . By stationarity we have

(𝑃 (cb)𝑛,𝑟 − 𝑃𝑟)ℎ =
1

𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

1
𝑘𝑟

𝑘𝑟
∑
𝑠=1

E[ℎ(𝑍𝑟 ,(𝑖−1)𝑘𝑟+𝑠)] − 𝑃𝑟ℎ

=
1
𝑘𝑟

𝑘𝑟
∑

𝑠=(𝑘−1)𝑟+2
( E[ℎ(𝑍𝑟 ,𝑠)] − 𝑃𝑟ℎ)
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=
1
𝑘𝑟

𝑟−1
∑
𝑡=1

E [ℎ(
max(𝑋1, … , 𝑋𝑡 , 𝑋(𝑘−1)𝑟+𝑡+1, … , 𝑋𝑘𝑟) − 𝑏𝑟

𝑎𝑟 ) − ℎ(
𝑴𝑟 ,1 − 𝑏𝑟

𝑎𝑟 )].

Condition 4.10.3 then gives
√
𝑛/𝑟(𝑃 (cb)𝑛,𝑟 − 𝑃𝑟)ℎ → 𝑘−1(𝐷ℎ,𝑘 + 𝐸ℎ). Furthermore, Condition

4.10.2 immediately implies
√
𝑛/𝑟(𝑃𝑟 − 𝑃)ℎ → 𝐵ℎ. Combined with the first assertion and

the penultimate display, we obtain the additional two claimed weak convergences.

Proof of Theorem 4.4.1. The second and third assertion follow immediately from the first
one and the triangular inequality. For the proof of the first one, we omit the upper index
cb. By Theorem 4.2.3 (for mb = sb) or Theorem 4.3.2 (for mb = cb) and Lemma 2.3 from
Bücher and Kojadinovic (2019), it is sufficient to show that, unconditionally,

(Ĝ[1]
𝑛,𝑟𝒉, Ĝ

[2]
𝑛,𝑟𝒉)⇝𝑞(𝟎, Σ(sb)ℎ ) ⊗𝑞(𝟎, Σ(sb)ℎ ),

where, for 𝑏 ∈ {1, 2}, Ĝ[𝑏]
𝑛,𝑟 =

√ 𝑛
𝑟
1
𝑛 ∑

𝑚(𝑘)
𝑖=1 (𝑊 [𝑏]

𝑚(𝑘),𝑖−1)∑𝑠∈𝐼𝑘𝑟,𝑖 𝛿𝒁𝑟 ,𝑠 with𝑾 [𝑏]
𝑚(𝑘) = (𝑊 [𝑏]

𝑚(𝑘),1, … ,𝑊 [𝑏]
𝑚(𝑘),𝑚(𝑘))

two i.i.d. copies of 𝑾𝑚(𝑘). By the Cramér-Wold device, it is sufficient to consider 𝑞 = 1,
and for this in turn, yet again by the Cramér-Wold device, it is sufficient to show that

𝑇𝑛 ∶=
2
∑
𝑏=1

𝑎𝑏
√
𝑛
𝑟
1
𝑛

𝑚(𝑘)

∑
𝑖=1

(𝑊
[𝑏]
𝑚(𝑘),𝑖 − 1) ∑

𝑠∈𝐼𝑘𝑟,𝑖

ℎ(𝒁𝑟 ,𝑠)⇝2(0, (𝑎21 + 𝑎
2
2)Σ

(sb)
ℎ ) (4.9.8)

for all 𝒂 = (𝑎1, 𝑎2)⊤ ∈ R2. Note that ∑𝑚(𝑘)
𝑖=1 (𝑊

[𝑏]
𝑚(𝑘),𝑖 − 1) = 0 and that ∑𝑠∈𝐼𝑘𝑟,𝑖 E[ℎ(𝒁𝑟 ,𝑠)] does

not depend on 𝑖, whence we may write

𝑇𝑛 =
2
∑
𝑏=1

𝑎𝑏
√
𝑛
𝑟
1
𝑛

𝑚(𝑘)

∑
𝑖=1

(𝑊
[𝑏]
𝑚(𝑘),𝑖 − 1)

{
∑
𝑠∈𝐼𝑘𝑟,𝑖

ℎ(𝒁𝑟 ,𝑠) − E[ℎ(𝒁𝑟 ,𝑠)]
}

=
2
∑
𝑏=1

𝑎𝑏
√
𝑛
𝑟

1
𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

(𝑊
[𝑏]
𝑚(𝑘),𝑖 − 1)𝐷𝑛,𝑖 (4.9.9)

with 𝐷𝑛,𝑖 from (4.9.2). The subsequent proof strategy, known as Poissonization, con-
sists of removing the dependence of the multinomial multipliers by introducing row-
wise i.i.d. multiplier sequences that approximate the multinomial multipliers. More
precisely, we employ the construction from Lemma 4.11.3: for each fixed 𝑛 ∈ N, let
(𝑼 [𝑏]

𝑗 ,𝑚(𝑘))𝑗∈N,𝑏∈{1,2} be i.i.d. multinomial vectors with 1 trial and 𝑚(𝑘) classes, with class
probabilities 1/𝑚(𝑘) for each class, and independent of (𝑿𝑡)𝑡∈Z. We may then assume
that

𝑾 [𝑏]
𝑚(𝑘) =

𝑚(𝑘)

∑
𝑗=1

𝑼 [𝑏]
𝑗 ,𝑚(𝑘).

Further, independent of (𝑼 [𝑏]
𝑗 ,𝑚(𝑘))𝑗∈N,𝑏∈{1,…,2} and of (𝑿𝑡)𝑡∈Z, let (𝑁 [𝑏]

𝑚(𝑘))𝑏=1,…,𝑀 be i.i.d. Poisson(𝑚(𝑘))
distributed random variables. Define

𝑾̃ [𝑏]
𝑚(𝑘) = (𝑊̃ [𝑏]

𝑚(𝑘),1, … , 𝑊̃ [𝑏]
𝑚(𝑘),𝑚(𝑘)) =

𝑁 [𝑏]
𝑚(𝑘)

∑
𝑗=1

𝑼 [𝑏]
𝑗 ,𝑚(𝑘).
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By Lemma 4.11.3 the random vectors 𝑾̃ [1]
𝑚(𝑘), 𝑾̃

[2]
𝑚(𝑘) are i.i.d. Poisson(1)⊗𝑚(𝑘) distributed.

Then, in view of (4.9.9), we may write 𝑇𝑛 = 𝑇𝑛 + 𝑎1𝑅𝑛1 + 𝑎2𝑅𝑛2, where

𝑇𝑛 =
√
𝑛
𝑟

1
𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

{ 2
∑
𝑏=1

𝑎𝑏(𝑊̃
[𝑏]
𝑚(𝑘),𝑖 − 1)

}
𝐷𝑛,𝑖,

𝑅𝑛𝑏 =
√
𝑛
𝑟

1
𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

(𝑊
[𝑏]
𝑚(𝑘),𝑖 − 𝑊̃

[𝑏]
𝑚(𝑘),𝑖)𝐷𝑛,𝑖.

We may apply Lemma 4.11.2 to obtain that 𝑇𝑛 ⇝  (0, (𝑎21 + 𝑎22)Σ
(sb)
ℎ ). For the proof of

(4.9.8), it hence remains to verify that 𝑅𝑛𝑏 = 𝑜P(1) for 𝑏 ∈ {1, 2}. We will suppress the
upper index [𝑏] in the following. First write

𝑅𝑛𝑏 =
√
𝑛
𝑟

1
𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

𝐷𝑛,𝑖sgn(𝑁𝑚(𝑘) −𝑚(𝑘))
∞
∑
𝑗=1

𝟏
{
𝑖 ∈ 𝐼 𝑗𝑚(𝑘)

}
,

where 𝐼 𝑗𝑚(𝑘) = {𝑖 ∈ {1, … ,𝑚(𝑘)}∶ |𝑊̃𝑚(𝑘),𝑖 −𝑊𝑚(𝑘),𝑖| ≥ 𝑗}.
We will start by showing that P(𝐴𝑛) = 𝑜(1),where𝐴𝑛 ∶= {|𝐼 3𝑚(𝑘)| > 0} = {∃𝑖 ∈ {1, … , 𝑚(𝑘)} ∶

|𝑊̃𝑚(𝑘),𝑖 − 𝑊𝑚(𝑘),𝑖| ≥ 3}. Fix 𝛿 > 0. Invoking the central limit theorem, we may choose
𝐶 = 𝐶𝛿 > 0 sufficiently large such that P(|𝑁𝑚(𝑘) −𝑚(𝑘)| > 𝐶

√
𝑚(𝑘)) ≤ 𝛿 for all 𝑛 ∈ N. Next,

note that, conditional on 𝑁𝑚(𝑘) = 𝑀 , the difference |𝑊̃𝑚(𝑘),𝑖 − 𝑊𝑚(𝑘),𝑖| follows a Bin(|𝑀 −
𝑚(𝑘)|, 𝑚(𝑘)−1) distribution. Further, setting 𝑐 = ⌈𝐶

√
𝑚(𝑘)⌉ and choosing 𝑀 such that

|𝑀 −𝑚(𝑘)| ≤ 𝑐, we have that Bin(|𝑀 −𝑚(𝑘)|, 𝑚(𝑘)−1)([3, |𝑀 −𝑚(𝑘)|]) ≤ Bin(𝑐, 𝑚(𝑘)−1)([3, 𝑐]).
As a consequence, conditioning on the event 𝑁𝑚(𝑘) = 𝑀 , we obtain

P(𝐴𝑛) ≤ P(|𝐼 3𝑚(𝑘)| > 0, |𝑁𝑚(𝑘) −𝑚(𝑘)| ≤ 𝑐) + 𝛿

≤
𝑚(𝑘)

∑
𝑖=1

P(|𝑊̃𝑚(𝑘),𝑖 −𝑊𝑚(𝑘),𝑖| ≥ 3, |𝑁𝑚(𝑘) −𝑚(𝑘)| ≤ 𝑐) + 𝛿

≤ 𝑚(𝑘)Bin(𝑐, 𝑚(𝑘)−1)([3, 𝑐]) + 𝛿

≤ 𝑚(𝑘){𝑐𝑚(𝑘)−2 + Poisson(𝑐𝑚(𝑘)−1)([3, 𝑐])} + 𝛿

=
𝑐

𝑚(𝑘)
+ 𝑚(𝑘)𝑒−𝑐/𝑚(𝑘)

𝑐
∑
𝑗=3

(𝑐𝑚(𝑘)−1)𝑗

𝑗!
+ 𝛿

= 𝑂((𝑚(𝑘))−1/2) + 𝛿,

where we used the approximation error of the Poisson Limit Theorem. Hence, since
𝛿 > 0 was arbitrary, P(𝐴𝑛) = 𝑜(1).

Next, note that, on 𝐴𝑐𝑛,

|𝐼 1𝑚(𝑘)| + |𝐼 2𝑚(𝑘)| =
∞
∑
𝑗=1

|𝐼 𝑗𝑚(𝑘)| =
𝑚(𝑘)

∑
𝑖=1

∞
∑
𝑗=1

𝟏
{
𝑖 ∈ 𝐼 𝑗𝑚(𝑘)

}
=

𝑚(𝑘)

∑
𝑖=1

|𝑊̃𝑚(𝑘),𝑖 −𝑊𝑚(𝑘),𝑖| = |𝑁𝑚(𝑘) −𝑚(𝑘)|,

using the fact that 𝑼𝑗 ,𝑚(𝑘) is multinomially distributed with 1 trial. As a consequence, let-
ting𝐻𝑛,𝑖 = 𝟏

{
𝑁𝑚(𝑘) ≠ 𝑚(𝑘)

}
[𝟏{𝑖 ∈ 𝐼 1𝑚(𝑘)} + 𝟏{𝑖 ∈ 𝐼 2𝑚(𝑘)}] /|𝑁𝑚(𝑘)−𝑚(𝑘)| and 𝑅̃𝑛𝑏 = ||∑

𝑚(𝑘)
𝑖=1 𝐻𝑛,𝑖𝐷𝑛,𝑖||,
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we obtain that

|𝑅𝑛𝑏| ≤ 𝟏𝐴𝑐𝑛
|||

√
𝑛
𝑟

1
𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

𝐷𝑛,𝑖

2
∑
𝑗=1

𝟏{𝑖 ∈ 𝐼 𝑗𝑚(𝑘)}
||| + 𝑜P(1) = 𝟏𝐴𝑐𝑛

√
𝑘 ×

|𝑁𝑚(𝑘) −𝑚(𝑘)|√
𝑚(𝑘)

× 𝑅̃𝑛𝑏 + 𝑜P(1).

Therefore, since |𝑁𝑚(𝑘) − 𝑚(𝑘)|/
√
𝑚(𝑘) = 𝑂P(1) by the Central Limit Theorem, the proof

of (4.9.8) is finished if we show that 𝑅̃𝑛𝑏 = 𝑜P(1). For that purpose note that, for any
fixed 𝜀 > 0,

P(
𝟏{𝑁𝑚(𝑘) ≠ 𝑚(𝑘)}
|𝑁𝑚(𝑘) −𝑚(𝑘)|

≥ 𝜀) ≤ P(|𝑁𝑚(𝑘) −𝑚(𝑘)| ≤
1
𝜀 )

= 𝑜(1)

by the Central Limit Theorem, which in turn yields

max
𝑖=1,…,𝑚(𝑘)

𝐻𝑛,𝑖 ≤
2

|(𝑁𝑚(𝑘) −𝑚(𝑘))|
𝟏{𝑁𝑚(𝑘) ≠ 𝑚(𝑘)} = 𝑜P(1).

Now let 𝜎𝑟(𝑖, 𝑗) = Cov(𝐷𝑛,𝑖, 𝐷𝑛,𝑗 ) and invoke the Conditional Tschebyscheff inequality
to obtain that, for fixed 𝜀 > 0,

P(|𝑅̃𝑛𝑏| > 𝜀 ∣ (𝐻𝑛,𝑖)𝑖=1,…,𝑚(𝑘))

≲
𝑚(𝑘)

∑
𝑖,𝑗=1

𝐻𝑛,𝑖𝐻𝑛,𝑗 |𝜎𝑟(𝑖, 𝑗)|

≤
{

𝑚(𝑘)
max
𝑗=1

𝐻𝑛,𝑗

}
×
{ 𝑚(𝑘)

∑
𝑖=1

𝐻𝑛,𝑖𝜎𝑟(1, 1) + 2
𝑚(𝑘)−1

∑
𝑖=1

𝐻𝑛,𝑖|𝜎𝑟(1, 2)| + ∑
|𝑖−𝑗|≥2

𝐻𝑛,𝑖|𝜎𝑟(𝑖, 𝑗)|
}

≤
{

𝑚(𝑘)
max
𝑗=1

𝐻𝑛,𝑗

}
×
{
𝜎𝑟(1, 1) + 2|𝜎𝑟(1, 2)| + 2𝑚(𝑘)

𝑚(𝑘)−1
max
𝑑=2

|𝜎𝑟(1, 1 + 𝑑)|
}
,

where we used ∑𝑚(𝑘)
𝑖=1 𝐻𝑛,𝑖 ≤ 1. Since max𝑚(𝑘)𝑗=1 𝐻𝑛,𝑗 = 𝑜P(1) and by the (proof of the) three

assertions in (4.9.4), we obtain that the expression on the right-hand side of the previous
display is 𝑜P(1). Hence, writing P(|𝑅̃𝑛𝑏| > 𝜀) = E [P(|𝑅̃𝑛𝑏| > 𝜀 ∣ (𝐻𝑛,𝑖)𝑖)] and invoking the
Dominated Convergence Theorem for convergence in probability, we obtain 𝑅̃𝑛𝑏 = 𝑜P(1)
and the proof is finished.

Proof for Remark 4.4.3. We sketch the proof of the conditional weak convergence in (4.4.2)
provided that Conditions 4.2.1, 4.2.2 and 4.10.1(a) are met. Repeating the arguments
from the proof of Theorem 4.4.1, the assertion follows from unconditional weak con-
vergence of

G̃(sb),∗
𝑛,𝑟 ℎ =

√
𝑛
𝑟

1
𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

𝑌𝑛,𝑖𝐷𝑛,𝑖,

where (𝑌𝑛,𝑖)𝑖 are iid with expectation 0 and variance 1, and where 𝐷𝑛,𝑖 are defined as in
(4.9.2), but with sb instead of cb. We only provide the proof for the convergence of the
variance of G̃(sb),∗

𝑛,𝑟 ℎ to Σ(𝑘)ℎ ; the remaining arguments are then the same as in the proof of
Lemma 4.11.2.
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Since (𝑌𝑛,𝑖𝐷𝑛,𝑖)𝑖 in uncorrelated, we obtain

Var(G̃(sb),∗)
𝑛,𝑟 ℎ) = 𝑘 Var(𝐷𝑛,1) =

1
𝑘𝑟2

𝑘𝑟
∑
𝑠=1

𝑘𝑟
∑
𝑡=1

Cov(ℎ(𝒁(sb)
𝑟,𝑠 ), ℎ(𝒁(sb)

𝑟,𝑡 ))

Using the notation after (4.9.4), we obtain

lim
𝑛→∞

Var(G̃(sb),∗)
𝑛,𝑟 ℎ) =

1
𝑘 ∫

𝑘

0
∫
𝑘

0
𝑔(𝜉, 𝜉 ′) d𝜉 ′ d𝜉.

We start by considering the case 𝑘 ≥ 2. Then, by the calculation in (4.9.6) but with 𝑔(𝑘)
replaced by 𝑔 ,

∫
𝑘

0
∫
𝑘

𝜉
𝑔(𝜉, 𝜉 ′) d𝜉 ′ d𝜉 = 𝐼1 + 𝐼2

where

𝐼1 = (𝑘 − 1)Σ(sb)ℎ /2 + ∫
1

0
∫
𝑦

0
𝑢(𝑥) d𝑥 d𝑦, 𝐼2 = ∫

1

0
∫
𝑘

𝑘−1+𝜉
𝑢(𝜉 ′ − 𝜉) d𝜉 ′ d𝜉 = 0.

The first integral over 𝑢 can be rewritten as

∫
1

0
∫
𝑦

0
𝑢(𝑥) d𝑥 d𝑦 = ∫

1

0
∫

1

𝑥
𝑢(𝑥) d𝑦 d𝑥 = ∫

1

0
(1 − 𝑥)𝑢(𝑥) d𝑥 = Σ(sb)ℎ /2 − ∫

1

0
𝑥𝑢(𝑥) d𝑥, (4.9.10)

so that

𝐼1 = 𝑘Σ(sb)ℎ /2 − ∫
1

0
𝑥𝑢(𝑥) d𝑥.

For symmetry reasons, we also have ∫ 𝑘0 ∫
𝜉
0 𝑔(𝜉, 𝜉

′) d𝜉 ′ d𝜉 = ∫ 𝑘0 ∫
𝑘
𝜉 𝑔(𝜉, 𝜉

′) d𝜉 ′ d𝜉 so that

Var(G̃(sb),∗
𝑛,𝑟 ℎ) = 𝑘 Var(𝐷𝑛,1) = Σ(sb)ℎ −

2
𝑘 ∫

1

0
𝑥𝑢(𝑥) d𝑥 + 𝑜(1)

as asserted.
It remains to consider the case 𝑘 = 1. A straightforward calculation then shows that

∫
1

0
∫

1

𝜉
𝑔(𝜉, 𝜉 ′) d𝜉 ′ d𝜉 = ∫

1

0
∫

1

𝜉
𝑢(𝜉 ′ − 𝜉) d𝜉 ′ d𝜉 = ∫

1

0
∫

1−𝜉

0
𝑢(𝑦) d𝑦 d𝜉 = ∫

1

0
∫
𝑥

0
𝑢(𝑦) d𝑦 d𝑥,

which implies the assertion by (4.9.10).

Proof of Theorem 4.5.5. The results regarding (𝛼̂(cb)𝑛 , 𝜎̂(cb)𝑛 )⊤ and (𝛼̂(cb),∗𝑛 , 𝜎̂(cb),∗𝑛 )⊤ follow from
an application of Theorem 4.11.6 and Theorem 4.11.7, respectively.

For the former we need to show that, with 𝑣𝑛 =
√
𝑛/𝑟, 𝜔𝑛 = 𝑛 and 𝑋𝑛,𝑠 = 𝑀 (cb)

𝑟,𝑠 ∨ 𝑐, the
“no-ties-condition” in Equation (4.11.4) is met, and that the three convergences in Con-
dition 4.11.5 are satisfied. Equation (4.11.4) follows from P(𝑋𝑛,1 = ⋯ = 𝑋𝑛,𝑛) ≤ P(𝑋𝑛,1 =
𝑋𝑛,𝑟+1) = P((𝑀𝑟 ,1 ∨ 𝑐)/𝜎𝑟 = (𝑀𝑟 ,𝑟+1 ∨ 𝑐)/𝜎𝑟), which converges to zero by the Portmanteau
theorem, observing that (𝑀𝑟 ,1 ∨ 𝑐)/𝜎𝑟 , (𝑀𝑟 ,𝑟+1 ∨ 𝑐)/𝜎𝑟) weakly converges to the product of
two independent Fréchet(𝛼0, 1) random variables by Lemma 5.1 in Bücher and Segers
(2018a). Condition 4.11.5(iii) is a consequence of Condition 4.5.4. Condition 4.11.5(ii)
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4.9 Proofs

follows from a straightforward modification of Theorem 4.3.2 to the Fréchet domain
of attraction. Finally, for 𝛼+ chosen sufficiently close to 𝛼0, Condition 4.11.5(ii) follows
from such a modification as well, following the argumentation on page 1116 in Bücher
and Segers (2018b).

Next, consider the assertions regarding (𝛼̂(cb),∗𝑛 , 𝜎̂(cb),∗𝑛 )⊤, which follow from Theorem 4.11.7
if we additionally show that the “no-ties-condition” in Equation (4.11.5) is met, that
P̂(cb),∗
𝑛,𝑟 𝑓 = 𝑃𝛼0,1𝑓 + 𝑜P(1) for all 𝑓 ∈ (𝛼−, 𝛼+) and that (4.11.7) is met. The latter two

assertions follow from similar arguments as given in the proof of Theorem 4.4.1 (adap-
tations to the Fréchet domain of attraction are needed), and it remains to show (4.11.5).
For that purpose, let 𝐼1, … , 𝐼𝑚(𝑘) be iid uniformly distributed on {1, … , 𝑚(𝑘)} independent
of (𝑋𝑛,1, … , 𝑋𝑛,𝑛), such that

(𝑋 ∗
𝑛,1, … , 𝑋 ∗

𝑛,𝑛)
𝑑= (𝑋𝑛,𝑘𝑟(𝐼1−1)+1, … , 𝑋𝑛,𝑘𝑟(𝐼1−1)+𝑘𝑟 , … , 𝑋𝑛,𝑘𝑟(𝐼𝑚(𝑘)−1)+1, … , 𝑋𝑛,𝑘𝑟(𝐼𝑚(𝑘)−1)+𝑘𝑟).

Then

P(𝑋 ∗
𝑛,1 = … = 𝑋 ∗

𝑛,𝑛) =
𝑚(𝑘)

∑
𝑖=1

P(𝐼1 = 𝑖, 𝑋 ∗
𝑛,1 = … = 𝑋 ∗

𝑛,𝑛)

≤
𝑚(𝑘)

∑
𝑖=1

P(𝐼1 = 𝑖, 𝑋𝑛,𝑘𝑟(𝐼1−1)+1 = … = 𝑋𝑛,𝑘𝑟(𝐼1−1)+𝑘𝑟)

=
1

𝑚(𝑘)

𝑚(𝑘)

∑
𝑖=1

P(𝑋𝑛,𝑘𝑟(𝑖−1)+1 = … = 𝑋𝑛,𝑘𝑟(𝐼1−1)+𝑘𝑟) = P(𝑋𝑛,1 = … = 𝑋𝑛,𝑘𝑟).

This probability is bounded by P(𝑋𝑛,1 = 𝑋𝑛,𝑟+1), which converges to zero as shown
above when proving Equation (4.11.4).

Proof of Corollary 4.5.6. Throughout, we omit the upper indexes (sb) and (cb) at 𝜎̂𝑛 and
𝜎̂∗𝑛 , respectively. Define 𝑆𝑛 =

√ 𝑛
𝑟 (𝜎̂𝑛/𝜎𝑟𝑛 −1) and 𝑆∗𝑛 =

√ 𝑛
𝑟 (𝜎̂

∗
𝑛 − 𝜎̂𝑛)/𝜎𝑟𝑛 , and note that, with

𝑀2(𝛼0) denoting the second row of 𝑀(𝛼0),

𝑆𝑛 = 𝑀2(𝛼0)G𝑛,𝑟(𝑓1, 𝑓2, 𝑓3)+𝑜P(1), 𝑆∗𝑛 =
𝜎̂𝑛
𝜎𝑟𝑛

√
𝑛
𝑟
(𝜎̂∗𝑛/𝜎̂𝑛−1) = 𝑀2(𝛼0)Ĝ∗

𝑛,𝑟(𝑓1, 𝑓2, 𝑓3)+𝑜P(1)

by Theorem 4.5.5. Moreover, arguing as in the proof of that theorem, the weak limit of
𝑆𝑛 coincides with the conditional weak limit of 𝑆∗𝑛 given the observations 𝑛. Therefore,
observing that 𝐹𝑆∗𝑛 (𝑥) = P(𝑆∗𝑛 ≤ 𝑥 ∣ 𝑛) satisfies 𝐹𝑆∗𝑛 (𝑥) = 𝐹𝜎̂∗𝑛 (𝜎̂𝑛 +

√ 𝑟
𝑛 ⋅ 𝜎𝑟𝑛𝑥) and hence

P(𝜎𝑟𝑛 ∈ 𝐼𝑛,𝛽) = P[

√
𝑛
𝑟
⋅ 𝜎−1𝑟𝑛 {(𝐹𝜎̂∗𝑛 )

−1(𝛽2 ) − 𝜎̂𝑛} ≤
√
𝑛
𝑟 (

𝜎̂𝑛
𝜎𝑟𝑛

− 1) ≤
√
𝑛
𝑟
⋅ 𝜎−1𝑟𝑛 {(𝐹𝜎̂∗𝑛 )

−1(1 − 𝛽
2 ) − 𝜎̂𝑛}]

= P[(𝐹𝑆∗𝑛 )
−1(𝛽2 ) ≤ 𝑆𝑛 ≤ (𝐹𝑆∗𝑛 )

−1(1 − 𝛽
2 )],

the assertion follows from Lemma 4.2 in Bücher and Kojadinovic (2019).
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4 Bootstrapping block maxima estimators for time series

4.10 Additional conditions

In order to integrate 𝒉(𝒁𝑟 ,𝑖) to the limit, we need mild asymptotic integrability condi-
tions. For mb ∈ {db, sb} the condition is standard. As the circmax-sample permutates the
underlying time series on a non-negligible part of the sample, we need a more involved
assumption on asymptotic integrability. In most cases both conditions can be verified
by similar arguments. Note that (b) implies (a) by letting 𝑡 = 𝑟 in the supremum. More-
over, for 𝑘 = 1 (disjoint blocks case), (a) and (b) are equivalent.

Condition 4.10.1 (Asymptotic Integrability). Fix 𝑘 ∈ N. Let 𝒉 = (ℎ1, … , ℎ𝑞)⊤∶ R𝑑 → R𝑞

be an a.e. continuous function with respect to the Lebesgue-measure on R𝑑 . There exists
a 𝜈 > 0 such that:

(a) lim sup𝑟→∞ E[‖𝒉(𝒁𝑟 ,1)‖2+𝜈] < ∞.
(b) lim sup𝑟→∞ sup𝑡=1,…,𝑟 E[‖𝒉((max{𝑿1, … , 𝑿𝑡 , 𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟 } − 𝒃𝑟)/𝒂𝑟)‖2+𝜈] < ∞.

Often we additionally impose that 𝜈 > 2/𝜔 with 𝜔 from Condition 4.2.2.
The next two conditions specify the asymptotic bias resulting from the approxima-

tion of the distribution of the various block maxima of size 𝑟𝑛 by the extreme value
distribution 𝐺.

Condition 4.10.2 (Disjoint and sliding blocks bias). Let 𝑟 = 𝑟𝑛 → ∞ with 𝑟𝑛 = 𝑜(𝑛) and let
𝒉 = (ℎ1, … , ℎ𝑞)⊤∶ R𝑑 → R𝑞 be measurable such that ℎ(𝒁𝑟 ,1) and ℎ(𝒁) are integrable. The
following limit exists:

𝑩𝒉 = lim
𝑛→∞

√
𝑛
𝑟
{
E [𝒉(𝒁𝑟 ,1)] − E [𝒉(𝒁)]

}
. (4.10.1)

Circularization as applied within the cirmax-sample changes the order of observa-
tions used to calculate some of the cirular block maxima. The next conditions captures
the resulting bias by decomposing it into two pieces, the first of which is due to a cou-
pling with an independent copy (𝑿̃𝑡)𝑡 of (𝑿𝑡)𝑡 .

Condition 4.10.3. Let 𝑟 = 𝑟𝑛 → ∞ with 𝑟𝑛 = 𝑜(𝑛) and let 𝒉 = (ℎ1, … , ℎ𝑞)⊤∶ R𝑑 → R𝑞 be
measurable and 𝑘 ∈ N≥2 be fixed. The following expectations and limits exist:

𝑫𝒉,𝑘 = lim
𝑛→∞

√
𝑛
𝑟
⋅
1
𝑟

𝑟−1
∑
𝑡=1

E [𝒉(
max(𝑿1, … , 𝑿𝑡 , 𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟) − 𝒃𝑟

𝒂𝑟 )

− 𝒉(
max(𝑿1, … , 𝑿𝑡 , 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟

𝒂𝑟 )],

𝑬𝒉 = lim
𝑛→∞

√
𝑛
𝑟
⋅
1
𝑟

𝑟−1
∑
𝑡=1

E [𝒉(
max(𝑿1, … , 𝑿𝑡 , 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟

𝒂𝑟 ) − 𝒉(𝒁𝑟 ,1)].

(4.10.2)

Note in passing that the asymptotic bias 𝑬𝒉 already appeared in Bücher and Zanger
(2023) in a slightly modified form in the setting of observing piecewise-stationary time
series.
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4.10 Additional conditions

The following result implies that in many situations the asymptotic bias terms 𝐷𝒉,𝑘
and 𝐸𝒉 are negligible. The result should be understood as a proof of concept in the sense
that one might formulate sharper results involving stronger integrability assumptions
(e.g., boundedness of ℎ𝑗 ) or a faster decay of mixing coefficients. Recall the beta-mixing
coefficient for stationary time series, 𝛽(𝓁) ∶= 𝛽(𝜎(… ,𝑿1, 𝑿0), 𝜎(𝑿1+𝓁, 𝑿2+𝓁, …)) with 𝓁 ∈ N,
where 𝛽(,) denotes the beta dependence coefficient between two sigma-fields  and
 (Bradley, 2005).

Lemma 4.10.4. Fix 𝑘 ∈ N≥2 and suppose that Condition 4.2.1 and 4.2.2 are met. Then 𝑫𝒉,𝑘 =
𝑬𝒉 = 0, provided the time series (𝑿𝑡)𝑡 is exponentially 𝛽-mixing (i.e., there exists 𝑐 > 0, 𝜆 ∈ (0, 1)
such that 𝛽(𝓁) ≤ 𝑐𝜆𝓁 for all 𝓁 ∈ N), that log 𝑛 = 𝑜(𝑟1/2) and that Condition 4.10.1(b) and

lim sup
𝑛→∞

sup
𝑡=1,…,𝑟

E [
‖‖‖ℎ(

max(𝑿1, … , 𝑿𝑡 , 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟
𝒂𝑟 )

‖‖‖
2+𝜈

] < ∞ (4.10.3)

lim sup
𝑛→∞

sup
𝑡=⌊𝑟1/2⌋,…,𝑟

E [
‖‖‖ℎ(

max(𝑿1, … , 𝑿𝑡−⌊𝑟1/2⌋, 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟
𝒂𝑟 )

‖‖‖
2+𝜈

] < ∞ (4.10.4)

lim sup
𝑛→∞

sup
𝑡=⌊𝑟1/2⌋,…,𝑟

E [
‖‖‖ℎ(

max(𝑿1, … , 𝑿𝑡−⌊𝑟1/2⌋, 𝑿𝑡+1, … , 𝑿𝑟) − 𝒃𝑟
𝒂𝑟 )

‖‖‖
2+𝜈

] < ∞ (4.10.5)

hold for some 𝜈 > 2/𝜔 with 𝜔 from Condition 4.2.2, where (𝑿̃𝑡)𝑡 is an independent copy of (𝑿𝑡)𝑡 .

Proof. Without loss of generality we may assume that 𝑞 = 1. First consider 𝐷ℎ,𝑘 and
define, for 𝑡 ∈ {1, … , 𝑟 − 1},

𝐷𝑛,ℎ,𝑘,𝑡 = ℎ(
max(𝑿1, … , 𝑿𝑡 , 𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟) − 𝒃𝑟

𝒂𝑟 ) − ℎ(
max(𝑿1, … , 𝑿𝑡 , 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟

𝒂𝑟 ).

Note that showing sup𝑡=1,…,𝑟−1(𝑛/𝑟)1/2| E[𝐷𝑛,ℎ,𝑘,𝑡]| = 𝑜(1) implies 𝐷ℎ,𝑘 = 0. By applying
Berbee’s coupling Lemma (Berbee, 1979) for each fixed 𝑡 ∈ {1, … , 𝑟 − 1} to the vectors
(𝑿1, … , 𝑿𝑡) and (𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟) we may assume that the random vector (𝑿̃1, … , 𝑿̃𝑟−𝑡)
satisfies P((𝑿̃1, … , 𝑿̃𝑟−𝑡) ≠ (𝑿(𝑘−1)𝑟+𝑡+1, … , 𝑿𝑘𝑟)) ≤ 𝛽(𝑟) ≤ 𝑐𝜆𝑟 ; where the last inequality
follows by assumption. Thus, by Hölder’s inequality and (4.10.3),

sup
𝑡=1,…,𝑟−1

√
𝑛
𝑟
E[|𝐷𝑛,ℎ,𝑘,𝑡 |] ≲

√
𝑛
𝑟
𝜆𝑟(1+𝜈)/(2+𝜈) = exp [𝑟( log 𝜆

1 + 𝜈
2 + 𝜈

+
log(𝑛/𝑟)

2𝑟 )].

The expression on the right converges to zero since log 𝑛 = 𝑜(𝑟). As a consequence,
𝐷ℎ,𝑘 = 0.

It remains to show that 𝐸ℎ = 0. Writing

𝐸𝑛,ℎ,𝑡 = ℎ(
max(𝑿1, … , 𝑿𝑡 , 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟

𝒂𝑟 ) − ℎ(𝒁𝑟 ,1).

it is sufficient to show that sup𝑡=1,…,𝑟−1(𝑛/𝑟)−1/2| E[𝐸𝑛,ℎ,𝑡]| = 𝑜(1). For that purpose, we split
the supremum according to 𝑡 > 𝑟/2 or 𝑡 ≤ 𝑟/2; both cases can then be treated similarly,
and we only provide details on the former one. For simplicity, we assume that 𝑟/2 ∈ N.
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4 Bootstrapping block maxima estimators for time series

Write 𝓁 = ⌊𝑟1/2⌋. The proof is finished once we show that

sup
𝑡=𝑟/2,…,𝑟

|||

√
𝑛
𝑟
E [ℎ(

max(𝑿1, … , 𝑿𝑡 , 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟
𝒂𝑟 )

− ℎ(
max(𝑿1, … , 𝑿𝑡−𝓁, 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟

𝒂𝑟 )]
||| = 𝑜(1) (4.10.6)

sup
𝑡=𝑟/2,…,𝑟

|||

√
𝑛
𝑟
E [ℎ(

max(𝑿1, … , 𝑿𝑡−𝓁, 𝑿̃1, … , 𝑿̃𝑟−𝑡) − 𝒃𝑟
𝒂𝑟 )

− ℎ(
max(𝑿1, … , 𝑿𝑡−𝓁, 𝑿𝑡+1, … , 𝑿𝑟) − 𝒃𝑟

𝒂𝑟 )]
||| = 𝑜(1) (4.10.7)

sup
𝑡=𝑟/2,…,𝑟

|||

√
𝑛
𝑟
E [ℎ(

max(𝑿1, … , 𝑿𝑡−𝓁, 𝑿𝑡+1, … , 𝑿𝑟) − 𝒃𝑟
𝒂𝑟 ) − ℎ(𝒁𝑟 ,1)]

||| = 𝑜(1). (4.10.8)

The proof of (4.10.7) is similar to the proof of 𝐷ℎ,𝑘 = 0 given above (invoking (4.10.4)
instead of (4.10.3)), and is therefore omitted (the final argument requires log 𝑛 = 𝑜(𝑟1/2),
which is then exactly met by assumption). The proof of (4.10.7) is a simplified version
of the proof of (4.10.8), so we only prove the latter for the sake of brevity. In view of
Condition 4.10.1(b) and (4.10.5), an application of Hölder’s inequality implies

sup
𝑡=𝑟/2,…,𝑟

|||

√
𝑛
𝑟
E [ℎ(

max(𝑿1, … , 𝑿𝑡−𝓁, 𝑿𝑡+1, … , 𝑿𝑟) − 𝒃𝑟
𝒂𝑟 ) − ℎ(𝒁𝑟 ,1)]

|||

≲ sup
𝑡=𝑟/2,…,𝑟

√
𝑛
𝑟

{
P(∃𝑗 ∈ {1, … , 𝑑} ∶ max(𝑋𝑡−𝓁+1,𝑗 , … , 𝑋𝑡,𝑗 ) > max(𝑋1,𝑗 , … , 𝑋𝑡−𝓁,𝑗 , 𝑋𝑡+1,𝑗 , … , 𝑋𝑟 ,𝑗 ))

} 1+𝜈
2+𝜈
.

By the union-bound, it is sufficient to show that

𝑅𝑛 ≡ sup
𝑡=𝑟/2,…,𝑟

√
𝑛
𝑟

𝑑max
𝑗=1

{
P(max(𝑋𝑡−𝓁+1,𝑗 , … , 𝑋𝑡,𝑗 ) > max(𝑋1,𝑗 , … , 𝑋𝑡−𝓁,𝑗 , 𝑋𝑡+1,𝑗 , … , 𝑋𝑟 ,𝑗 ))

} 1+𝜈
2+𝜈

= 𝑜(1). (4.10.9)

Subsequently, we write 𝑋𝑡 instead of 𝑋𝑡−𝑗 , as all subsequent bounds are uniform in 𝑗 .
We then have

P(max(𝑋𝑡−𝓁+1, … , 𝑋𝑡) > max(𝑋1, … , 𝑋𝑡−𝓁, 𝑋𝑡+1, … , 𝑋𝑟))

≤
𝑡

∑
𝑖=𝑡−𝓁+1

P(𝑋𝑖 > max(𝑋1, … , 𝑋𝑡−𝓁, 𝑋𝑡+1, … , 𝑋𝑟)).

For fixed 𝑖 in the previous sum, let 𝐽 ⊂ {1, … , 𝑡 − 𝓁} denote the maximal set of indexes
such that |𝑗1 − 𝑖| ≥ 𝓁 and |𝑗1 − 𝑗2| ≥ 𝓁 for all distinct 𝑗1, 𝑗2 ∈ 𝐽 ; note that |𝐽 | = 𝑂(𝑟/𝓁) since
𝑡 > 𝑟/2. We then have

P(𝑋𝑖 > max(𝑋1, … , 𝑋𝑡−𝓁, 𝑋𝑡+1, … , 𝑋𝑟)) ≤ P(𝑋𝑖 > max(𝑋𝑗 ∶ 𝑗 ∈ 𝐽 )).

We may now successively apply Berbee’s coupling lemma (Berbee, 1979) to construct a
vector (𝑋̌𝑗 )𝑗∈𝐽 with iid coordinates that is independent of 𝑋𝑖 and satisfies 𝑋̌𝑗 =𝑑 𝑋𝑗 for all
𝑗 ∈ 𝐽 such that

P(𝑋𝑖 > max(𝑋𝑠 ∶ 𝑠 ∈ 𝐽 )) ≤ P(𝑋𝑖 > max(𝑋̌𝑠 ∶ 𝑠 ∈ 𝐽 )) + |𝐽 |𝛽(𝓁).
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More precisely, writing 𝐽 = {𝑗1, … , 𝑗|𝐽 |}, the first application is to 𝑋𝑗1 and (𝑋𝑗2 , … , 𝑋𝑗|𝐽 | , 𝑋𝑖).
The second application is to (𝑋̌𝑗1 , 𝑋𝑗2) and (𝑋𝑗3 , … , 𝑋𝑗|𝐽 | , 𝑋𝑖), where 𝑋̌𝑗1 is the random vari-
able constructed with the first application, and so on.

Since P(𝑋𝑖 > max(𝑋̌𝑠 ∶ 𝑠 ∈ 𝐽 )) = 2−|𝐽 | by Fubini’s theorem, we obtain from the last
three displays that

sup
𝑡=𝑟/2,…,𝑟

P(max(𝑋𝑡−𝓁+1, … , 𝑋𝑡) > max(𝑋1, … , 𝑋𝑡−𝓁, 𝑋𝑡+1, … , 𝑋𝑟)) ≤ 𝓁2−|𝐽 |+𝓁|𝐽 |𝛽(𝑟) ≲ 𝓁2−𝑟/𝓁+𝑟𝜆𝓁.

In view of our choice of 𝓁 = ⌊𝑟1/2⌋, and letting 𝜁 = min(2, 1/𝜆) > 1, the right hand side is
bounded by 2𝑟𝜁−

√
𝑟 , whence 𝑅𝑛 from (4.10.9) can be bounded by

𝑅𝑛 ≲
√
𝑛
𝑟 (
𝑟𝜁−

√
𝑟)

(1+𝜈)/(2+𝜈) = exp
{
−
√
𝑟( log(𝜁 )

1 + 𝜈
2 + 𝜈

−
log 𝑟
√
𝑟
1 + 𝜈
2 + 𝜈

−
log(𝑛/𝑟)

√
𝑟 )

}
= 𝑜(1)

by assumption on 𝑟 . This proves (4.10.9), and the proof is finished.
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Proposition 4.11.1 (Joint weak convergence of circular block maxima). Fix 𝑘 ∈ N≥2 and
suppose Conditions 4.2.1 and 4.2.2(a), (b) are met. Then, for any 𝜉 , 𝜉 ′ ∈ [0, 𝑘) and 𝒙, 𝒚 ∈ R𝑑 ,
we have

lim
𝑛→∞

P(𝒁
(cb)
𝑟,1+⌊𝜉𝑟⌋ ≤ 𝒙, 𝒁

(cb)
𝑟,1+⌊𝜉 ′𝑟⌋ ≤ 𝒚) = 𝐺(𝑘)

|𝜉−𝜉 ′ |(𝒙, 𝒚) ∶=
⎧⎪⎪
⎨⎪⎪⎩

𝐺𝑘−|𝜉−𝜉 ′ |(𝒙, 𝒚), |𝜉 − 𝜉 ′| > 𝑘 − 1,

𝐺|𝜉−𝜉 ′ |(𝒙, 𝒚), |𝜉 − 𝜉 ′| ≤ 𝑘 − 1,

(4.11.1)

with 𝐺𝜉 from (4.2.3). Moreover, any circular block maxima taken from distinct 𝑘𝑟-blocks are
asymptotically independent, that is, for any 1 ≤ 𝑖 ≠ 𝑖′ ≤ 𝑚(𝑘), 𝜉 , 𝜉 ′ ∈ [0, 𝑘) and 𝒙, 𝒚 ∈ R𝑑 ,

lim
𝑛→∞

P(𝒁
(cb)
𝑟,(𝑖−1)𝑘𝑟+1+⌊𝜉𝑟⌋ ≤ 𝒙, 𝒁

(cb)
𝑟,(𝑖′−1)𝑘𝑟+1+⌊𝜉 ′𝑟⌋ ≤ 𝒚) = 𝐺1(𝒙, 𝒚) = 𝐺(𝒙)𝐺(𝒚). (4.11.2)

Proof. We start by showing marginal convergence (i.e., 𝒚 = ∞); the result then corre-
sponds to Proposition 4.3.1. The case 𝜉 ≤ 𝑘 − 1 is trivial. For 𝜉 > 𝑘 − 1 and fixed 𝒙 ∈ R𝑑 ,
we may proceed as in the proof of Lemma 2.4 in Bücher and Zanger (2023) to obtain

P(𝒁
(cb)
𝑟,1+⌊𝜉𝑟⌋ ≤ 𝒙) = P(

max(𝑿1+⌊𝜉𝑟⌋, … , 𝑿𝑘𝑟) − 𝒃𝑟
𝒂𝑟

≤ 𝒙,
max(𝑿1, … , 𝑿𝑟+⌊𝜉𝑟⌋−𝑘𝑟) − 𝒃𝑟

𝒂𝑟
≤ 𝒙)

= P(
max(𝑿1+⌊𝜉𝑟⌋, … , 𝑿𝑘𝑟) − 𝒃𝑟

𝒂𝑟
≤ 𝒙)P(

max(𝑿1, … , 𝑿𝑟+⌊𝜉𝑟⌋−𝑘𝑟) − 𝒃𝑟
𝒂𝑟

≤ 𝒙) + 𝑅𝑛,

where 𝑅𝑛 = 𝑂(𝛼(𝑟𝑛)) = 𝑜(1). Next, by stationarity, the product on the right-hand side of
the previous display can be written as

P(𝒁𝑘𝑟−⌊𝜉𝑟⌋ ≤
𝒂𝑟𝒙 + 𝒃𝑟 − 𝒃𝑘𝑟−⌊𝜉𝑟⌋

𝒂𝑘𝑟−⌊𝜉𝑟⌋ )P(𝒁𝑟+⌊𝜉𝑟⌋−𝑘𝑟 ≤
𝒂𝑟𝒙 + 𝒃𝑟 − 𝒃𝑟+⌊𝜉𝑘⌋−𝑘𝑟

𝒂𝑟+⌊𝜉𝑟⌋−𝑘𝑟 )
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The convergence in Equation (4.2.1) being locally uniform we obtain, for 𝑗 ∈ {1, … , 𝑑},

lim
𝑛→∞

𝑎(𝑗)𝑟 𝑥(𝑗) + 𝑏(𝑗)𝑟 − 𝑏(𝑗)𝑘𝑟−⌊𝜉𝑟⌋
𝑎(𝑗)𝑘𝑟−⌊𝜉𝑟⌋

= (𝑘 − 𝜉)−𝛾
(𝑗)
𝑥(𝑗) +

(𝑘 − 𝜉)−𝛾(𝑗) − 1
𝛾(𝑗)

,

lim
𝑛→∞

𝑎(𝑗)𝑟 𝑥(𝑗) + 𝑏(𝑗)𝑟 − 𝑏(𝑗)𝑟+⌊𝜉𝑟⌋−𝑘𝑟
𝑎(𝑗)𝑟+⌊𝜉𝑟⌋−𝑘𝑟

= (1 + 𝜉 − 𝑘)−𝛾
(𝑗)
𝑥(𝑗) +

(1 + 𝜉 − 𝑘)−𝛾(𝑗) − 1
𝛾(𝑗)

.

Arguing as in the proof of Lemma 8.9 from Bücher and Staud (2024b), Condition 4.2.1
and the previous three displays yield, for 𝑛 → ∞,

P(𝒁(cb)
𝑟,1+⌊𝜉𝑟⌋ ≤ 𝒙) = 𝐺𝑘−𝜉 (𝒙)𝐺1+𝜉−𝑘(𝒙) + 𝑜(1) = 𝐺(𝒙) + 𝑜(1).

We proceed by proving (4.11.1), and start by considering the case |𝜉 − 𝜉 ′| > 𝑘 − 1.
Without loss of generality let 𝜉 < 𝜉 ′ such that 1 + ⌊𝜉𝑟⌋ ≤ 𝑟 and 1 + ⌊𝜉 ′𝑟⌋ > (𝑘 − 1)𝑟 . Then,
by the same arguments as for the marginal convergence,

lim
𝑛→∞

P(𝒁
(cb)
1+⌊𝜉𝑟⌋ ≤ 𝒙, 𝒁

(cb)
1+⌊𝜉 ′𝑟⌋ ≤ 𝒚)

= lim
𝑛→∞

P(
max(𝑿𝑟 ,1, … , 𝑿𝑟 ,⌊𝜉𝑟⌋) − 𝒃𝑟

𝒂𝑟
≤ 𝒚,

max(𝑿𝑟 ,1+⌊𝜉𝑟⌋, … , 𝑿𝑟 ,⌊𝜉 ′𝑟⌋−(𝑘−1)𝑟) − 𝒃𝑟
𝒂𝑟

≤ 𝒙 ∧ 𝒚

max(𝑿𝑟 ,⌊𝜉 ′𝑟⌋−(𝑘−1)𝑟+1, … , 𝑿𝑟 ,𝑟+⌊𝜉𝑟⌋) − 𝒃𝑟
𝒂𝑟

≤ 𝒙,
max(𝑿𝑟 ,1+⌊𝜉 ′𝑟⌋, … , 𝑿𝑘𝑟) − 𝒃𝑟

𝒂𝑟
≤ 𝒚)

= 𝐺𝜉 (𝒚) ⋅ 𝐺𝜉
′−(𝑘−1)−𝜉 (𝒙 ∧ 𝒚) ⋅ 𝐺1+𝜉−𝜉 ′+(𝑘−1)(𝒙) ⋅ 𝐺𝑘−𝜉

′
(𝒚)

= 𝐺𝑘−(𝜉
′−𝜉)(𝒚) ⋅ 𝐺1−(𝑘−(𝜉 ′−𝜉))(𝒙 ∧ 𝒚) ⋅ 𝐺𝑘−(𝜉

′−𝜉)(𝒙)

= 𝐺𝑘−(𝜉 ′−𝜉)(𝒙, 𝒚),

where we used (4.2.3) at the last equality.
Next, consider the case |𝜉 − 𝜉 ′| ≤ 𝑘 − 1, and again assume 𝜉 < 𝜉 ′. There are two

subcases to handle; first let 𝜉 ′ ∈ (𝑘 − 1, 𝑘]. In that case we have 𝜉 ≥ 1, hence there is no
overlapping from the left (induced by the circ-max-operation). We may then proceed in
a similar (but simpler) way as for |𝜉 − 𝜉 ′| > 𝑘 − 1 to obtain the stated limit. Alternatively,
we have 𝜉 ′ ≤ 𝑘 − 1. In that case, we are in the sliding block maxima case, where the
result is known, see e.g. Lemma 8.6 in Bücher and Staud (2024b).

Finally, the assertion in (4.11.2) follows from similar arguments as in Lemmas A.7,
A.8 from Bücher and Segers (2018b), which yield

P(𝒁
(cb)
(𝑖−1)𝑘𝑟+1+⌊𝜉𝑟⌋ ≤ 𝒙, 𝒁

(cb)
(𝑖′−1)𝑘𝑟+1+⌊𝜉 ′𝑟⌋ ≤ 𝒚) = P(𝒁

(cb)
1+⌊𝜉𝑟⌋ ≤ 𝒙) ⋅ P(𝒁

(cb)
1+⌊𝜉 ′𝑟⌋ ≤ 𝒚) + 𝑜(1)

by stationarity. The product on the right-hand side converges to𝐺(𝒙)𝐺(𝒚) by the marginal
convergence.

Lemma 4.11.2 (Multiplier central limit theorem). Suppose Conditions 4.2.1 and 4.2.2 are
met. Fix 𝑘 ∈ N and let 𝒉 = (ℎ1, … , ℎ𝑞)⊤ satisfy Condition 4.10.1 with 𝜈 > 2/𝜔 and 𝜔 from Con-
dition 4.2.2. Let 𝑌𝑛,1, … , 𝑌𝑛,𝑚(𝑘) be a triangular array of rowwise independent and identically dis-
tributed random variables that is independent of (𝑿1, 𝑿2, … ) such that lim sup𝑛→∞ E[|𝑌𝑛,1|2+𝜈] <

98



4.11 Auxiliary results

∞ with 𝜈 from Condition 4.10.1 and such that the limit 𝜇2 ∶= lim𝑛→∞ E[𝑌 2𝑛,1] > 0 exists. Then,
for 𝑛 → ∞ and with Σ(mb)

𝒉 from (4.2.4), we have

Ḡ◦
𝑛,𝑟𝒉 ∶=

√
𝑛
𝑟
1
𝑛

𝑚(𝑘)

∑
𝑖=1

𝑌𝑛,𝑖 ∑
𝑠∈𝐼𝑘𝑟,𝑖

{
𝒉(𝒁(cb)

𝑟,𝑠 ) − E[𝒉(𝒁(cb)
𝑟,𝑠 )]

}
⇝

⎧⎪⎪
⎨⎪⎪⎩

𝑞(0, 𝜇2Σ(db)𝒉 ) if 𝑘 = 1,

𝑞(0, 𝜇2Σ(sb)𝒉 ) if 𝑘 ∈ {2, 3, … }.

Proof. We only consider the case 𝑘 ≥ 2; the case 𝑘 = 1 is a simple modification. By the
Cramér-Wold Theorem, it is sufficient to consider the case 𝑞 = 1. Since 𝑚(𝑘) = 𝑛/(𝑘𝑟),
we may write Ḡ◦

𝑛,𝑟ℎ =
√ 𝑛

𝑟
1

𝑚(𝑘) ∑
𝑚(𝑘)
𝑖=1 𝑌𝑛,𝑖𝐷𝑛,𝑖, with𝐷𝑛,𝑖 = 1

𝑘𝑟 ∑𝑠∈𝐼𝑘𝑟,𝑖{ℎ(𝒁
(cb)
𝑟,𝑠 )−E[ℎ(𝒁(cb)

𝑟,𝑠 )]} from
(4.9.2). Then, since (𝑌𝑛,𝑖𝐷𝑛,𝑖)𝑖 is uncorrelated,

Var(Ḡ◦
𝑛,𝑟ℎ) = 𝑘 E[𝑌 2𝑛,1] Var(𝐷𝑛,1) = 𝜇2Σ(sb)ℎ + 𝑜(1)

by (4.9.4). This implies the assertion for Σ(sb)ℎ = 0.
If Σ(sb)ℎ > 0, we may follow a similar line of reasoning as in the proof of Theorem 4.3.2:

decompose

Ḡ◦
𝑛,𝑟ℎ =

1
√𝑝

𝑝

∑
𝑗=1

(𝑇+𝑛,𝑗 + 𝑇
−
𝑛,𝑗 ), where 𝑇±𝑛,𝑗 ∶=

√
𝑛𝑝
𝑟

1
𝑚(𝑘)

∑
𝑖∈𝐽±𝑗

𝑌𝑛,𝑖𝐷𝑛,𝑖,

where 𝑝 = 𝑚(𝑘)/𝑚∗ with 𝑚∗ = 𝑜(𝑚𝜈/(2(1+𝜈))) and 𝐽+𝑗 ∶= {(𝑗 − 1)𝑚∗ + 1,… , 𝑗𝑚∗ − 1}, 𝐽−𝑗 ∶=
{𝑗𝑚∗}. Following the arguments from the proof of Theorem 4.3.2, we have 𝑝−1/2∑𝑝

𝑗=1 𝑇−𝑛,𝑗 =
𝑜P(1). Moreover, we may assume independence of (𝑆+𝑛,𝑗 )𝑗 , which enables an application
of Ljapunov’s central limit theorem to 𝑝−1/2∑𝑝

𝑗=1 𝑇+𝑛,𝑗 to conclude.

The next result is possibly well-known; we skip its elementary proof (see also Section
2 in Klaassen and Wellner, 1992).

Lemma 4.11.3 (Poissonization). For 𝑞 ∈ N≥2 and (𝑝1, … , 𝑝𝑞) ∈ [0, 1]𝑞 with 𝑝1 + ⋯ + 𝑝𝑞 =
1, let (𝑼𝑗 ,𝑞)𝑗∈N be i.i.d. multinomial vectors with 1 trial and 𝑞 classes with class probabilities
𝑝1, … , 𝑝𝑞 . For 𝑚 ∈ N let 𝑾𝑚,𝑞 = (𝑊𝑚,𝑞,1, … ,𝑊𝑚,𝑞,𝑞) = ∑𝑚

𝑗=1 𝑼𝑗 ,𝑞 (which is multinomial with
𝑚 trials and 𝑞 classes). Further, for 𝜆 > 0, let 𝑁 be a Poi(𝜆)-distributed random variable that
is independent of (𝑼𝑗 ,𝑞)𝑗∈N. Then, the random variables 𝑊𝑁 ,𝑞,1, … ,𝑊𝑁 ,𝑞,𝑞 are independent and
𝑊𝑁 ,𝑞,𝑗 follows a Poi(𝜆𝑝𝑗 )-distribution for 𝑗 = 1, … , 𝑞.

Lemma 4.11.4. Let 𝑑 = 1 and suppose that ℎ is a real-valued function such that Var(ℎ(𝒁)) ∈
(0,∞) exists. Then, for all 𝜉 ∈ [0, 1], Cov(ℎ(𝒁1,𝜉 ), ℎ(𝒁2,𝜉 )) ≥ 0 with strict inequality in a
neighbourhood of 0.

Proof. By our assumption 𝑑 = 1, the cdf 𝐺 from (4.2.2) corresponds to the GEV(𝛾)- dis-
tribution, which has a Lebesgue-density that we denote by 𝑔 . For 𝜉 ∈ (0, 1), we may
employ the following stochastic construction for (𝒁1,𝜉 , 𝒁2,𝜉 )⊤: let 𝑈 ,𝑊 be i.i.d. with cdf
𝐺𝜉 and independent of 𝑉 , the latter having the cdf 𝐺1−𝜉 . We then have (𝒁1,𝜉 , 𝒁2,𝜉 ) =
(𝑈 ∨ 𝑉 ,𝑊 ∨ 𝑉 ). Without loss of generality assume E[ℎ(𝒁1,𝜉 )] = 0 and note that

Cov(ℎ(𝒁1,𝜉 ), ℎ(𝒁2,𝜉 )) = E[ℎ(𝑈 ∨ 𝑉 )ℎ(𝑊 ∨ 𝑉 )]
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= 2E[ℎ(𝑈)ℎ(𝑉 )𝐺𝜉 (𝑉 )𝟏{𝑉 < 𝑈}]

+ E[ℎ(𝑈)ℎ(𝑊 )𝐺1−𝜉 (𝑈 ∧ 𝑊 )] + E[ℎ2(𝑉 )𝐺2𝜉 (𝑉 )] ≡ 2𝐼1 + 𝐼2 + 𝐼3.
(4.11.3)

Let 𝐻 ∶ R̄ → R, 𝐻(𝑥) = ∫ 𝑥−∞ ℎ(𝑧)𝑔(𝑧) d𝑧 and note that 𝐻(∞) = 0 = 𝐻(−∞), where we made
use of E[ℎ(𝒁1,𝜉 )] = ∫

R
ℎ(𝑧)𝑔(𝑧) d𝑧. Using integration by parts we obtain

𝐼1 = (1 − 𝜉)𝜉 ∫
∞

−∞
𝐺𝜉−1(𝑥)𝐻 ′(𝑥)𝐻(𝑥) d𝑥 =

𝜉
2
(1 − 𝜉)2 ∫

∞

−∞
𝐺𝜉−2(𝑥)𝑔(𝑥)𝐻 2(𝑥) d𝑥 ≥ 0.

Similarly, we have 𝐼2 = 𝜉2(1− 𝜉) ∫∞−∞ 𝐺
𝜉−2(𝑥)𝑔(𝑥)𝐻 2(𝑥) d𝑥 ≥ 0. In view of (4.11.3) and 𝐼3 ≥ 0

this proves the first assertion.
For the second assertion note that 𝐼3 = (1 − 𝜉) E[ℎ2(𝒁)𝐺𝜉 (𝒁)] ≤ Var(ℎ(𝒁)) < ∞ and

𝐼𝑗 ≥ 0 for 𝑗 = 1, 2, 3. By dominated convergence and (4.11.3) we then have

lim inf
𝜉↓0

Cov(ℎ(𝑾1,𝜉 ), ℎ(𝑾2,𝜉 )) ≥ lim inf
𝜉↓0

𝐼3 = Var(ℎ(𝒁)) > 0,

which lets us conclude.

4.11.1 A general result on bootstrapping the Fréchet independence MLE

Throughout this section, let 𝑛 = (𝑋𝑛,1, … , 𝑋𝑛,𝜔𝑛) denote a sequence of random vectors in
(0, ∞)𝜔𝑛 with continuous cumulative distribution functions 𝐹𝑛,1, … , 𝐹𝑛,𝜔𝑛 , where 𝜔𝑛 → ∞ is
a sequence of integers. Throughout, we assume that asymptotically not all observations
are tied, that is,

lim
𝑛→∞

P(𝑋𝑛,1 = ⋯ = 𝑋𝑛,𝜔𝑛) = 0. (4.11.4)

For some 𝛼0 > 0 and 𝜎𝑛 → ∞, proximity of the 𝐹𝑛,1, … , 𝐹𝑛,𝜔𝑛 to the Fréchet-distribution
𝑃𝛼0,𝜎𝑛 will be controlled by convergence conditions on empirical means of 𝑋𝑛,𝑖/𝜎𝑛: for
0 < 𝛼− < 𝛼0 < 𝛼+ < ∞, let (𝛼−, 𝛼+) denote the set of functions containing 𝑥 ↦ log 𝑥, 𝑥 ↦
𝑥−𝛼 , 𝑥 ↦ 𝑥−𝛼 log 𝑥 and 𝑥 ↦ 𝑥−𝛼 log2 𝑥 for all 𝛼 ∈ (𝛼−, 𝛼+). Moreover, recall 𝑓1(𝑥) = 𝑥−𝛼0 ,
𝑓2(𝑥) = 𝑥−𝛼0 log 𝑥 and 𝑓3(𝑥) = log 𝑥 from (4.5.4), considered as functions on (0, ∞), and
let  = {𝑓1, 𝑓2, 𝑓3}. For a real-valued function 𝑓 defined on (0, ∞) such that the following
integrals/expectations exist, let

P𝑛𝑓 =
1
𝜔𝑛

𝜔𝑛
∑
𝑖=1

𝑓 (𝑋𝑛,𝑖/𝜎𝑛), 𝑃𝑛𝑓 =
1
𝜔𝑛

𝜔𝑛
∑
𝑖=1

E[𝑓 (𝑋𝑛,𝑖/𝜎𝑛)], 𝑃𝛼0,1𝑓 ∶= ∫ 𝑓 (𝑥) d𝑃𝛼0,1(𝑥).

Condition 4.11.5. (i) There exists 0 < 𝛼− < 𝛼0 < 𝛼+ < ∞ such that P𝑛𝑓 ⇝ 𝑃𝛼0,1𝑓 for all
𝑓 ∈ (𝛼−, 𝛼+).

(ii) There exists 0 < 𝑣𝑛 → ∞ such that Ḡ𝑛(𝑓1, 𝑓2, 𝑓3)⊤ ⇝ 𝑁3(𝟎, Σ𝐺), where Ḡ𝑛𝑓 = 𝑣𝑛(P𝑛𝑓 −
𝑃𝑛𝑓 ) and where Σ𝐺 ∈ R3×3 is positive semidefinite.

(iii) With 𝑣𝑛 from (ii), the limit 𝑩𝐺 ∶= lim𝑛→∞ 𝐵𝑛(𝑓1, 𝑓2, 𝑓3)⊤ exists, where 𝐵𝑛𝑓 = 𝑣𝑛(𝑃𝑛𝑓 −
𝑃𝛼0,1𝑓 ).
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Recall the log-likelihood function 𝓁𝜽 of the Fréchet distribution from (4.5.2).

Theorem 4.11.6 (Bücher and Segers, 2018b). (i) Suppose that (4.11.4) holds and that Condi-
tion 4.11.5(i) is met. Then, on the complement of the event {𝑋𝑛,1 = ⋯ = 𝑋𝑛,𝜔𝑛}, the independence
Fréchet log-likelihood 𝜽 ↦ ∑𝜔𝑛

𝑖=1 𝓁𝜽(𝑋𝑛,𝑖) has a unit maximizer 𝜽̂𝑛 = (𝛼̂𝑛, 𝜎̂𝑛), and that maximizer
is consistent in the sense that (𝛼̂𝑛, 𝜎̂𝑛/𝜎𝑛) = (𝛼0, 1) + 𝑜P(1) as 𝑛 → ∞.

(ii) If, additionally, Condition 4.11.5(ii)-(iii) is met, then

𝑣𝑛(
𝛼̂𝑛 − 𝛼0
𝜎̂𝑛/𝜎𝑛 − 1)

= 𝑀(𝛼0)(Ḡ𝑛 + 𝐵𝑛)(𝑓1, 𝑓2, 𝑓3)⊤ + 𝑜P(1)⇝2(𝑀(𝛼0)𝑩𝐺, 𝑀(𝛼0)Σ𝐺𝑀(𝛼0)⊤)

as 𝑛 → ∞, where

𝑀(𝛼0) =
6
𝜋2 (

𝛼20 𝛼0(1 − 𝛾) −𝛼20
𝛾 − 1 −(Γ′′(2) + 1)/𝛼0 1 − 𝛾)

with Γ(𝑧) = ∫∞0 𝑡𝑧−1𝑒−𝑡 d𝑡 the Euler Gamma function and 𝛾 = 0.5772… the Euler-Mascheroni
constant.

Now, conditional on 𝑛 = (𝑋𝑛,1, … , 𝑋𝑛,𝜔𝑛), let ∗
𝑛 = (𝑋 ∗

𝑛,1, … , 𝑋 ∗
𝑛,𝜔𝑛) denote a bootstrap

sample of 𝑛; formally, ∗
𝑛 is assumed to be a measurable function of both 𝑛 and of

some additional independent random element 𝑛 taking values in some measurable
space. For the subsequent consistency statements, the bootstrap sample is assumed to
satisfy the not-all-tied condition

lim
𝑛→∞

P(𝑋 ∗
𝑛,1 = ⋯ = 𝑋 ∗

𝑛,𝜔𝑛) = 0 (4.11.5)

or, equivalently, P(𝑋 ∗
𝑛,1 = ⋯ = 𝑋 ∗

𝑛,𝜔𝑛 ∣ 𝑛) = 𝑜P(1) as 𝑛 → ∞. The bootstrap scheme is
assumed to be regular in the sense that the conditional distribution of certain rescaled
arithmetic means is close to the distribution of respective arithmetic means of the orig-
inal sample. For a real-valued function 𝑓 on (0, ∞), define P̂∗

𝑛𝑓 = 1
𝜔𝑛 ∑

𝜔𝑛
𝑖=1 𝑓 (𝑋 ∗

𝑛,𝑖/𝜎𝑛) and
Ĝ∗
𝑛𝑓 = 𝑣𝑛(P̂∗

𝑛𝑓 − P𝑛𝑓 ).

Theorem 4.11.7. Suppose that (4.11.4), (4.11.5) and Condition 4.11.5 is met, that P̂∗
𝑛𝑓 =

𝑃𝛼0,1𝑓 + 𝑜P(1) for all 𝑓 ∈ (𝛼−, 𝛼+) (or, equivalently, P(|P̂∗
𝑛𝑓 − 𝑃𝛼0,1| > 𝜀 ∣ 𝑛) = 𝑜P(1) for all

𝜀 > 0 and all 𝑓 ∈ (𝛼−, 𝛼+)) and that

𝑑𝐾((Ĝ∗
𝑛(𝑓1, 𝑓2, 𝑓3)

⊤ ∣ 𝑛),3(𝟎, Σ𝐺)) = 𝑜P(1). (4.11.6)

Then, on the complement of the event {𝑋 ∗
𝑛,1 = ⋯ = 𝑋 ∗

𝑛,𝜔𝑛}, the independence Fréchet-log-
likelihood 𝜽 ↦ ∑𝜔𝑛

𝑖=1 𝓁𝜽(𝑋 ∗
𝑛,𝑖) has a unit maximizer 𝜽∗𝑛 = (𝛼̂∗𝑛 , 𝜎̂∗𝑛), and that maximizer satisfies

𝑣𝑛(
𝛼̂∗𝑛 − 𝛼̂𝑛
𝜎̂∗𝑛/𝜎̂𝑛 − 1)

= 𝑀(𝛼0)Ĝ∗
𝑛(𝑓1, 𝑓2, 𝑓3)

⊤ + 𝑜P(1). (4.11.7)

As a consequence, if additionally 𝑩𝐺 = 0, we have bootstrap consistency in the following sense

𝑑𝐾 [

(
𝑣𝑛(

𝛼̂∗𝑛 − 𝛼̂𝑛
𝜎̂∗𝑛/𝜎̂𝑛 − 1)

|||𝑛)
,

(
𝑣𝑛(

𝛼̂𝑛 − 𝛼0
𝜎̂𝑛/𝜎𝑛 − 1))]

= 𝑜P(1). (4.11.8)
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Since it concerns empirical means only, the condition in (4.11.6) is typically a standard
result for the bootstrap; see for instance Section 10 and 11 in Kosorok (2008).

Proof of Theorem 4.11.7. First, by Theorem 4.11.6 (which is Theorem 2.3, Theorem 2.5
and Addendum 2.6 in Bücher and Segers, 2018b applied to the sample 𝑛), we have

𝑣𝑛(
𝛼̂𝑛 − 𝛼0
𝜎̂𝑛/𝜎𝑛 − 1)

= 𝑀(𝛼0)(Ḡ𝑛 + 𝐵𝑛)(𝑓1, 𝑓2, 𝑓3)⊤ + 𝑜P(1)⇝ 𝑀(𝛼0)3(𝑩𝐺, Σ𝐺). (4.11.9)

Next, in view of the fact that (4.11.6) implies Ĝ∗
𝑛(𝑓1, 𝑓2, 𝑓3)⊤ ⇝ 3(𝟎, Σ𝐺) (uncondition-

ally) by Lemma 2.3 in Bücher and Kojadinovic (2019), we have

G◦
𝑛(𝑓1, 𝑓2, 𝑓3)

⊤ ∶= 𝑣𝑛(P̂∗
𝑛(𝑓1, 𝑓2, 𝑓3)

⊤ − 𝑃𝛼0,1(𝑓1, 𝑓2, 𝑓3)
⊤)⇝3(𝑩𝐺, Σ𝐺).

Hence, we may apply Theorem 2.3, Theorem 2.5 and Addendum 2.6 in Bücher and
Segers (2018b) to the sample ∗

𝑛 (unconditionally) to obtain that

𝑣𝑛(
𝛼̂∗𝑛 − 𝛼0
𝜎̂∗𝑛/𝜎𝑛 − 1)

= 𝑀(𝛼0)G◦
𝑛(𝑓1, 𝑓2, 𝑓3)

⊤ + 𝑜P(1) (4.11.10)

As a consequence, by (4.11.9), (4.11.10) and 𝜎̂𝑛/𝜎𝑛 = 1 + 𝑜P(1), we have

𝑣𝑛(
𝛼̂∗𝑛 − 𝛼̂𝑛
𝜎̂∗𝑛/𝜎̂𝑛 − 1)

= 𝑣𝑛(
𝛼̂∗𝑛 − 𝛼0 − (𝛼̂𝑛 − 𝛼0)

𝜎𝑛/𝜎̂𝑛(𝜎∗𝑛/𝜎𝑛 − 1 − (𝜎̂𝑛/𝜎𝑛 − 1)))

= {1 + 𝑜P(1)} (𝑀(𝛼0)(G◦
𝑛 − G𝑛 − 𝐵𝑛)(𝑓1, 𝑓2, 𝑓3)⊤ + 𝑜P(1))

= 𝑀(𝛼0)Ĝ∗
𝑛(𝑓1, 𝑓2, 𝑓3)

⊤ + 𝑜P(1), (4.11.11)

which is (4.11.7).
Finally, for the proof of (4.11.8), let #

𝑛 denote a second bootstrap sample, generated in
the same way as ∗

𝑛 and independent of ∗
𝑛 , conditionally on 𝑛. Denote the respective

estimators and empirical measures/processes by 𝛼̂#𝑛 , P̂#
𝑛 etc. Then, by the expansions in

(4.11.11),

𝑣𝑛

⎛
⎜
⎜
⎜
⎜
⎜
⎝

𝛼̂∗𝑛 − 𝛼̂𝑛
𝜎̂∗𝑛/𝜎̂𝑛 − 1
𝛼̂#𝑛 − 𝛼̂𝑛
𝜎̂#𝑛/𝜎̂𝑛 − 1

⎞
⎟
⎟
⎟
⎟
⎟
⎠

=
(
𝑀(𝛼0)(Ĝ∗

𝑛)(𝑓1, 𝑓2, 𝑓3)⊤

𝑀(𝛼0)(Ĝ#
𝑛)(𝑓1, 𝑓2, 𝑓3)⊤)

+ 𝑜P(1).

Equation (4.11.6) and Lemma 2.3 in Bücher and Kojadinovic (2019) implies that the
dominating term on the right-hand side converges weakly (unconditionally) to
2(𝟎,𝑀(𝛼0)Σ𝐺𝑀(𝛼0)⊤)⊗2, which by another reverse application of that lemma implies

𝑑𝐾 [

(
𝑣𝑛(

𝛼̂∗𝑛 − 𝛼̂𝑛
𝜎̂∗𝑛/𝜎̂𝑛 − 1)

|||𝑛)
,2(𝟎,𝑀(𝛼0)Σ𝐺𝑀(𝛼0)⊤)]

= 𝑜P(1).

The assertion then follows from the triangular inequality and (4.11.9), noting that 𝑩𝐺 = 𝟎
by assumption.
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4.11.2 Auxiliary results on bootstrap consistency

Lemma 4.11.8. Let 𝑺𝑛, 𝑻𝑛 ∈ R𝑞 with 𝑺𝑛 ⇝ 𝑺, 𝑻𝑛 ⇝ 𝑺 ∈ R𝑞 . Furthermore, let (𝑺) be absolutely
continuous with respect to the Lebesgue measure on R𝑞 . We then have

lim
𝑛→∞

𝑑𝐾[(𝑨𝑛𝑺𝑛),(𝑨𝑛𝑻𝑛)] = 0,

for any sequence (𝑨𝑛)𝑛 ⊂ R𝑝×𝑞 of matrices.

Proof. Write 𝑨𝑛 = (𝒂⊤𝑛,𝑗 )𝑗=1,…,𝑝 with 𝒂𝑛,𝑗 ∈ R𝑞 . A straightforward argument shows that
we may assume 𝒂𝑛,𝑗 ≠ 𝟎 for all 𝑗 = 1, … 𝑝. Next, note that, for all diagonal matri-
ces 𝑫 = diag(𝑑𝑗 )𝑗=1,…𝑝 with 𝑑𝑗 ≠ 0 and all R𝑝-valued random variables 𝑺, 𝑻 , we have
𝑑𝐾 [(𝑺),(𝑻 )] = 𝑑𝐾 [(𝑫𝑺),(𝑫𝑻 )]. Hence, letting 𝑑𝑗 ∶= ‖𝒂𝑛,𝑗 ‖−12 and 𝑨̃𝑛 = (𝒂̃⊤𝑛,𝑗 )𝑗=1,…,𝑝
with normed 𝑎̃𝑛,𝑗 = 𝒂𝑛,𝑗/‖𝒂𝑛,𝑗 ‖2 ∈ R𝑝, we have 𝑨̃𝑛 = 𝑫𝑨𝑛 and therefore

𝑑𝐾[(𝑨𝑛𝑺𝑛),(𝑨𝑛𝑻𝑛)] = 𝑑𝐾[(𝑨̃𝑛𝑺𝑛),(𝑨̃𝑛𝑻𝑛)]. (4.11.12)

Since 𝑨̃𝑛 ∈ [−1, 1]𝑝×𝑞 , the Bolzano-Weierstraß Theorem allows to find a subsequence
𝑛′ ∶= 𝑛′(𝑛) such that 𝑬 = lim𝑛→∞ 𝑨̃𝑛′ exists. Slutsky’s lemma then yields the weak
convergences 𝑨̃𝑛′𝑺𝑛′ ⇝ 𝑬𝑺 and 𝑨̃𝑛′𝑻𝑛′ ⇝ 𝑬𝑺. We will show below that the cdf of 𝑬𝑺 is
continuous. Since the Kolmogorov-metric 𝑑𝐾 metrizes weak convergence to limits with
continuous cdfs (van der Vaart, 1998, Lemma 2.11), an application of the triangular
inequality implies

𝑑𝐾[(𝑨̃𝑛′𝑺𝑛′),(𝑨̃𝑛′𝑻𝑛′)] ≤ 𝑑𝐾[(𝑨̃𝑛′𝑺𝑛′),(𝑬𝑺)] + 𝑑𝐾[(𝑬𝑺),(𝑨̃𝑛′𝑻𝑛′)] = 𝑜(1)

for 𝑛′ → ∞. As the previous argumentation can be repeated for subsequences 𝑛′ of
arbitrary subsequences 𝑛′′, we then have 𝑑𝐾[(𝑨̃𝑛𝑺𝑛),(𝑨̃𝑛𝑻𝑛)] = 𝑜(1), which implies
the assertion by (4.11.12).

It remains to show that the cdf of 𝑬𝑺 is continuous. For that purpose, by Sklar’s theo-
rem and the fact that copulas are continuous, it is sufficient to show that each marginal
cdf of 𝑬𝑺 is continuous. Hence, fix 𝑗 ∈ {1, … , 𝑝}, and note that the 𝑗th row of 𝑬, say 𝒆⊤𝑗 ,
has Euclidean norm 1. We may therefore construct an invertible matrix 𝑬̃ = 𝑬̃(𝒆𝑗 ) ∈ R𝑞×𝑞

with the first row of 𝑬̃ being equal to 𝒆⊤𝑗 . Then 𝑬̃ being a diffeomorphism and 𝑺 being
absolutely continuous with respect to the Lebesgue-measure on R𝑞 implies the latter
for 𝑬̃𝑺. Hence, for any 𝑦 ∈ R, P((𝑬𝑺)𝑗 = 𝑦) = P(𝑬̃𝑺 ∈ {𝑦} × R𝑞−1) = 0. Since 𝑦 ∈ R was
arbitrary, this proves the continuity of 𝑦 ↦ P((𝑬𝑺)𝑗 ≤ 𝑦).

Lemma 4.11.9. Let (Ω,,P) denote a probability space and 𝑝, 𝑞 ∈ N. For 𝑛 ∈ N, let 𝑿𝑛∶ Ω →
𝑛, 𝑾𝑛∶ Ω → 𝑛 denote random variables in some measurable space 𝑛,𝑛, respectively. Let
𝑺𝑛 = 𝑺𝑛(𝑿𝑛) and 𝑺∗𝑛 = 𝑺𝑛(𝑿𝑛, 𝑾𝑛) be R𝑞-valued statistics. If

(𝑎) 𝑑𝑤((𝑺∗𝑛 ∣ 𝑿𝑛),(𝑺𝑛))
P−→ 0, as 𝑛 → ∞;

(𝑏) 𝑺𝑛 ⇝ 𝑄, as 𝑛 → ∞;
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where 𝑄 is absolutely continuous with respect to the Lebesgue-measure on R𝑞 and 𝑑𝑤 denotes
any metric characterizing weak convergence on R𝑞 ; then

𝑑𝐾((𝑨𝑛𝑺∗𝑛 ∣ 𝑿𝑛),(𝑨𝑛𝑺𝑛))
P−→ 0, as 𝑛 → ∞,

for any sequence (𝑨𝑛)𝑛 ⊂ R𝑝×𝑞 of matrices.

Proof. Let 𝑛′ ⊂ N denote a subsequence of N. By assumption (a), we may choose a
further subsequence 𝑛′′ of 𝑛′ and Ω0 ∈  with P(Ω0) = 1 such that

lim
𝑛→∞

𝑑𝑤((𝑺∗𝑛′′ ∣ 𝑿𝑛′′),(𝑺𝑛′′)) = 0 on Ω0.

Hence, since 𝑺𝑛 ⇝ 𝑄 by assumption, we obtain (𝑺∗𝑛′′ ∣ 𝑿𝑛′′) ⇝ 𝑄 on Ω0. Lemma 4.11.8
then implies

lim
𝑛→∞

𝑑𝐾((𝑨𝑛′′𝑺∗𝑛′′ ∣ 𝑿𝑛′′),(𝑨𝑛′′𝑺𝑛′′)) = 0 on Ω0,

which lets us conclude.

4.12 Appendix

4.12.1 Details on mean estimators in the ARMAX-GPD model

Corollary 4.12.1. Suppose (𝑋𝑡)𝑡∈Z is an ARMAX-GPD time series as in Model 4.6.1, for some
𝛽 ∈ [0, 1) and some 𝛾 < 1/2. Then, if the block size parameter satisfies 𝑟 = 𝑜(𝑛) and log 𝑛 =
𝑜(𝑟1/2), √

𝑛/𝑟
(𝑟(1 − 𝛽))𝛾 (

𝜇̂(mb)
𝑛 − 𝜇𝑟)⇝ (0, 𝜎2mb), mb ∈ {db, sb, cb},

with 𝜎2cb = 𝜎2sb < 𝜎2db as provided in (4.6.2). The ratio 𝛾 ↦ 𝜎2db/𝜎
2
sb(𝛾) is presented in Figure

4.10.
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Figure 4.10: Ratio of the asymptotic variances 𝜎2db/𝜎
2
sb from (4.6.2).

Proof. The proof is akin to the one of Equation (4.3) in Bücher and Staud (2024b); most
details are omitted for the sake of brevity and we only discuss the calculation of the
asymptotic variance parameter 𝜎2sb (note that 𝜎2db simply corresponds to the variance of
the GEV(𝛾)-distribution by definition).
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4.12 Appendix

We start by considering the case 𝛾 ≠ 0. For 𝑖 ∈ {1, 2}, the random variables 𝑆𝑖,𝜉 ∶= (1 +
𝛾𝑍𝑖,𝜉 )1/𝛾 are standard exponentially distributed, and we have Cov(𝑍1,𝜉 , 𝑍2,𝜉 ) = 𝛾−2 Cov(𝑆−𝛾1,𝜉 , 𝑆

−𝛾
2,𝜉 ) =∶

𝛾−2𝐶𝜉 . For 𝛾 < 0, Equation (C.8) in the supplement of Bücher and Staud (2024b) implies
that

∫
1

0
𝐶𝜉 d𝜉 = 2𝛾2Γ(−2𝛾) ∫

1/2

0
(𝛼2𝛾(𝑤) − 1)(𝑤−𝛾−1(1 − 𝑤)−𝛾−1 d𝑤) = 2𝛾2Γ(−2𝛾)𝐼 (𝛾),

hence 𝜎2sb = 4Γ(−2𝛾)𝐼 (𝛾). For 𝛾 > 0, the display above (C.9) in the same reference implies

∫
1

0
𝐶𝜉 d𝜉 = −𝛾

Γ(1 − 2𝛾
2

𝐼 (𝛾).

Hence, 𝜎2sb = −Γ(1 − 2𝛾)/𝛾𝐼 (𝛾).
Finally, for 𝛾 = 0 consider the transformed random variables 𝑆𝑖,𝜉 = exp(−𝑍𝑖,𝜉 ) for

𝑖 ∈ {1, 2}, which gives Cov(𝑍1,𝜉 , 𝑍2,𝜉 ) = Cov(log 𝑆1,𝜉 , log 𝑆2,𝜉 ) = 𝐶𝜉 . By formula (C.11) from
the same reference we have

∫
1

0
𝐶𝜉 d𝜉 = ∫

1

0

1
𝑤(1 − 𝑤) ∫

1

0
− log(𝐴𝜉 (𝑤)) d𝜉 d𝑤,

where 𝐴𝜉 (𝑤) = 𝜉 + (1 − 𝜉)(𝑤 ∧ (1 − 𝑤)) is the Pickands-dependence function of the as-
sociated Copula 𝐶𝜉 of the Marshall-Olkin distribution with dependence parameter 𝜉 . It
follows that

∫
1

0
𝐶𝜉 d𝜉 = 2 ∫

1

1/2

1
𝑤(1 − 𝑤) ∫

1

0
− log(𝜉 + (1 − 𝜉)𝑤) d𝜉 d𝑤 = log 4 − 1,

which implies the asserted formula.

4.12.2 Runtime comparison

In classical situations, the computational cost of the bootstrap depends linearly on the
number of bootstrap replications and is therefore high if a single evaluation of a statistic
of interest is computationally intensive. Since both the sliding and the circular block
maxima samples are much larger than the plain disjoint block maxima sample (sample
sizes 𝑛 vs. 𝑛/𝑟 , respectively), one may naively think that the former methods require
substantially more computational resources. As we will argue below and prove with
simulations, this naive heuristic is not correct.

For any block maxima method, the starting point for a single evaluation of a statistic
of interest is the calculation of the respective block maxima samples, which requires
evaluating 𝑂(𝑛/𝑟) maxima for the disjoint block maxima method, or 𝑂(𝑛) maxima for
the sliding and circular block maxima method. Subsequently, when the statistic of in-
terest is applied to one of the samples, the fact that both the sliding and the circmax
samples can be efficiently stored as a weighted sample of size 𝑂(𝑛/𝑟) implies that the
additional computational cost of the latter two methods is, approximately, only a con-
stant multiple of the additional cost for the plain disjoint block maxima method. Next,
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4 Bootstrapping block maxima estimators for time series

for the bootstrap approaches proposed within this paper, no additional evaluation of
maxima is ever required, whence, overall, the only major difference between the three
approaches is the initial calculation of the block maxima samples. Therefore, the rela-
tive computational effort should only depend on 𝑛, and only moderately.

The above heuristic has been confirmed by Monte Carlo simulations. Exemplary
results are presented in Figure 4.11, which rely on simulated data from Model 4.6.2
(parameters: 𝛽 = 0.5 and 𝛼 = 1.5) with fixed block size 𝑟 = 90 and total sample size
ranging form 40 ⋅ 90 = 3, 600 up to 100 ⋅ 90 = 9, 000. The target parameter is the runtime
for calculating 𝐵 ∈ {250, 500, 750, 1, 000} bootstrap replicates of 𝜽̂(mb)

𝑛 from (4.5.1) for mb ∈
{db, sb, cb(2), cb(3)}, assessed by taking the median over 𝑁 = 500 repetitions each. The
disjoint blocks method has been considered as a benchmark, whence we depict relative
runtimes with respect to that method. We find that, as expected, the relative runtime
is mostly depending on 𝑛, with only a moderate loss in performance for the circmax-
method. Similar results were obtained for other estimators and models.
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Figure 4.11: Relative median runtimes of different bootstrap algorithms for bootstrap-
ping 𝜽̂(mb)

𝑛 (relative to the runtime of the disjoint blocks bootstrap) for fixed
blocksize 𝑟 = 90 as a function of the effective sample size and for different
numbers of bootstrap replicates 𝐵.

Acknowledgements

Financial support by the German Research Foundation (DFG grant number 465665892)
and by Ruhr University Research School (funded by Germany’s Excellence Initiative
- DFG GSC 98/3) is gratefully acknowledged. Computational infrastructure and sup-
port were provided by the Centre for Information and Media Technology at Heinrich
Heine University Düsseldorf. The authors are grateful to Johan Segers for fruitful dis-
cussions on the circular block maxima method, and to the participants of the Oberwol-
fach Workshop on “Mathematics, Statistics, and Geometry of Extreme Events in High
Dimensions” for their valuable comments.

106



5 On the maximal correlation coefficient for the bivariate
Marshall Olkin distribution

In this section we present the preprint Bücher and Staud (2024c) which is concerned
with deriving the maximal correlation coefficient of the Marshall Olkin bivariate expo-
nential distribution. This is in line with the article sharing policy of the Statistics and
Probability Letters. Only minor changes to improve the presentation within this thesis
have been made.

Abstract

We prove a formula for the maximal correlation coefficient of the bivari-
ate Marshall Olkin distribution that was conjectured in Lin, Lai, and Govin-
daraju (2016, Stat. Methodol., 29:1–9). The formula is applied to obtain a
new proof for a variance inequality in extreme value statistics that links the
disjoint and the sliding block maxima method.

Keywords. Bivariate Exponential Distribution; Disjoint and Sliding Block Maxima; Ex-
treme Value Statistics; Marshall Olkin Copula; Maximal Correlation Coefficient.

5.1 Introduction

The bivariate Marshall Olkin exponential distribution (Marshall and Olkin, 1967) arises
from considering random lifetimes within a two-component system, say (𝑋1, 𝑋2), where
the components are subject to three different sources of fatal shocks. The occurrence
times of the shocks are modeled by three independent exponential variables 𝑍1, 𝑍2, 𝑍12
with positive parameters 𝜆1, 𝜆2, 𝜆12, respectively. The first component of the system
fails as soon as any of the two shocks 𝑍1 or 𝑍12 has occurred, that is, at time 𝑋1 =
𝑍1 ∧ 𝑍12. Likewise, the second component fails at time 𝑋2 = 𝑍2 ∧ 𝑍12. A straightforward
calculation then shows that the joint survival function of (𝑋1, 𝑋2) is

𝐻̄ (𝑥1, 𝑥2) = P(𝑋1 > 𝑥1, 𝑋2 > 𝑥2) = P(𝑍1 > 𝑥1, 𝑍2 > 𝑥2, 𝑍12 > 𝑥1 ∨ 𝑥2)

= exp{−𝜆1𝑥1 − 𝜆2𝑥2 − 𝜆12(𝑥1 ∨ 𝑥2)} (𝑥1, 𝑥2 > 0),

while the marginal survival functions satisfy 𝐻̄𝑗 (𝑥𝑗 ) = P(𝑋𝑗 > 𝑥𝑗 ) = exp{−(𝜆𝑗 + 𝜆12)𝑥𝑗 }. In
particular, the marginals are exponentially distributed.

The Marshall Olkin distribution has been well-studied in the literature, with precise
formulas being available for its Laplace transform, its product moments, or its Pear-
son, Kendall or Spearman correlation. We refer to Marshall and Olkin (1967); Lin et al.
(2016), among others. The present work is motivated by an open problem mentioned
in Lin et al. (2016) which concerns the maximal correlation coefficient of the Marshall
Olkin distribution (see their open problem B). Dating back to Gebelein (1941), the max-
imal correlation has been well-researched. The Gebelein-Lancaster Theorem (Gebelein,
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5 On the maximal correlation coefficient for the bivariate Marshall Olkin distribution

1941; Lancaster, 1957) states the remarkable property, that for a bivariate normal distri-
bution with Pearson correlation 𝜌 the coefficient is given by |𝜌| . For further properties,
see Yu (2008) among others. The maximal correlation has applications in numerous
fields of statistics, such as optimal transport in regression Breiman and Friedman (1985).
Recall that the maximal correlation coefficient is defined as

𝑅(𝐻) ∶= 𝑅(𝑋1, 𝑋2) ∶= sup
𝑓 ,𝑔

Corr(𝑓 (𝑋1), 𝑔(𝑋2)), (5.1.1)

where the supremum is taken over all functions 𝑓 and 𝑔 such that Var(𝑓 (𝑋1)), Var(𝑔(𝑋2)) ∈
(0, ∞) exists and where 𝐻 denotes the cumulative distribution function (cdf) of (𝑋1, 𝑋2).
Dating back to Gebelein (1941), the maximal correlation coefficient has been extensively
studied. For instance, it is known to satisfy a number of desirable properties of a de-
pendence measure (Rényi, 1959) and it has applications in numerous fields of statistics,
such as optimal transport for regression (Breiman and Friedman, 1985). We refer to Yu
(2008) and the references therein for further properties and applications. In general, the
calculation of maximal correlation coefficients is difficult (with the Gebelein-Lancaster
theorem (Gebelein, 1941; Lancaster, 1957) being a notable exception: for a bivariate nor-
mal distribution with Pearson correlation 𝜌 the coefficient is given by |𝜌|), but based on
extensive moment calculations, Lin et al. (2016) conjecture that

𝑅(𝐻) = 𝑅(𝑋1, 𝑋2) =
𝜆12√

𝜆1 + 𝜆12
√
𝜆2 + 𝜆12

(5.1.2)

for the bivariate Marshall Olkin distribution 𝐻 . The main result of this note is a proof,
given in Section 5.2. Our proof is based on certain elegant arguments from Yu (2008),
who derived a new proof of the Gebelein-Lancaster theorem.

Next to the proof of (5.1.2), a major contribution of this note is an application of (5.1.2)
to provide a new and elegant proof for an important variance inequality in extreme
value statistics. Details are provided in Section 5.3.

5.2 The maximal correlation for the Marshall Olkin distribution

In view of the continuity of the marginal survival functions, Sklar’s theorem implies
that the random vector (𝑋1, 𝑋2) has a unique survival copula 𝐶̂, that is, a bivariate cdf 𝐶̂
with standard uniform margins, such that 𝐻̄ (𝑥1, 𝑥2) = 𝐶̂(𝐻̄1(𝑥1), 𝐻̄2(𝑥2)) for all 𝑥1, 𝑥2 ≥ 0
(Nelsen, 2006). A straightforward calculation shows that this copula is given by 𝐶̂ =
𝐶𝜙,𝜓, where

𝐶𝜙,𝜓(𝑢, 𝑣) = min(𝑢1−𝜙𝑣, 𝑢𝑣1−𝜓), 𝑢, 𝑣 ∈ [0, 1]2, (5.2.1)

with 𝜙 = 𝜆12/(𝜆1 + 𝜆12) and 𝜓 = 𝜆12/(𝜆2 + 𝜆12), see also Lin et al. (2016); Embrechts et al.
(2001).

Theorem 5.2.1. For parameters 𝜙, 𝜓 ∈ [0, 1]2, we have 𝑅(𝐶𝜙,𝜓) =
√
𝜙𝜓.
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5.2 The maximal correlation for the Marshall Olkin distribution

Equation (5.1.2) is now an immediate corollary of the former theorem; we state it for
the sake of reference.

Corollary 5.2.2 (Open problem B in Lin et al., 2016). The bivariate Marshall Olkin distri-
bution 𝐻 with parameters 𝜆1, 𝜆2, 𝜆12 > 0 satisfies (5.1.2).

Proof. Since the maximal correlation coefficient is invariant under (square-integrable)
transformations of the margins and recalling the definitions of 𝜙, 𝜓, we have 𝑅(𝐻) =
𝑅(𝐶̂) = 𝑅(𝐶𝜙,𝜓) =

√
𝜙𝜓 = 𝜆12/(

√
𝜆1 + 𝜆12

√
𝜆2 + 𝜆12) by Theorem 5.2.1.

The proof of Theorem 5.2.1 is based on the following two lemmas from Yu (2008),
which we quote in full for the sake of readability.

Lemma 5.2.3 (Yu, 2008). If non-degenerate random variables 𝑋 and 𝑌 are conditionally inde-
pendent given 𝑍 , then 𝑅(𝑋, 𝑌 ) ≤ 𝑅(𝑋, 𝑍)𝑅(𝑌 , 𝑍). Moreover, equality holds if (𝑋, 𝑍) and (𝑌 , 𝑍)
have the same distribution.

Lemma 5.2.4 (Yu, 2008). If non-degenerate random variables 𝑋 and 𝑌 are independent and
identically distributed, and 𝑍 = 𝑓 (𝑋, 𝑌 ), where 𝑓 is a symmetric function of 𝑥 and 𝑦, then
𝑅(𝑋, 𝑍) ≤ 2−1/2.

Proof of Theorem 5.2.1. The assertion is trivial if either 𝜙 ∈ {0, 1} or 𝜓 ∈ {0, 1}; so let 𝜙, 𝜓 ∈
(0, 1). Furthermore, let 𝑋, 𝑌 , 𝑍 be independent standard uniform on [0, 1], and define

(𝑈 , 𝑉 ) = (𝑋 1/(1−𝜙) ∨ 𝑍1/𝜙, 𝑌 1/(1−𝜓) ∨ 𝑍1/𝜓),

which has cdf 𝐶𝜙,𝜓. For 𝑘 ≥ 0, define 𝑓𝑘(𝑥) = 𝑥𝑘+1/(𝑘 + 1) with derivative 𝑓 ′𝑘 (𝑥) = 𝑥𝑘. A
straightforward calculation yields Var(𝑓𝑘(𝑈 )) = {(2𝑘 + 3)(𝑘 + 2)2}−1.

Cov(𝑓𝑘(𝑈 ), 𝑓𝓁(𝑉 )) = ∫
1

0
∫

1

0

{
P(𝑈 > 𝑢, 𝑉 > 𝑣) − (1 − 𝑢)(1 − 𝑣)

}
𝑢𝑘𝑣𝓁 d𝑢 d𝑣

= ∫
1

0
∫

1

0

{
min(𝑢1−𝜙𝑣, 𝑢𝑣1−𝜓) − 𝑢𝑣

}
𝑢𝑘𝑣𝓁 d𝑢 d𝑣

=
𝜙𝜓

(𝑘 + 2)(𝓁 + 2){(𝓁 + 2)𝜙 + (𝑘 + 2)𝜓 − 𝜙𝜓}
,

where the first equality is due to an extension of Hoeffding’s covariance formula (Lo,
2017, Theorem 3.1), the second equality uses the fact that P(𝑈 > 𝑢, 𝑉 > 𝑣) − (1 − 𝑢)(1 −
𝑣) = P(𝑈 ≤ 𝑢, 𝑉 ≤ 𝑣) − 𝑢𝑣 and the last equality follows from lengthy but elementary
calculations. As a consequence

Corr(𝑓𝑘(𝑈 ), 𝑓𝓁(𝑉 )) =
𝜙𝜓

√
(2𝑘 + 3)(2𝓁 + 3)

(𝓁 + 2)𝜙 + (𝑘 + 2)𝜓 − 𝜙𝜓
. (5.2.2)

Letting 𝑘 = 𝜙𝑚 and 𝓁 = 𝜓𝑚, this expression converges to
√
𝜙𝜓 for 𝑚 → ∞. As a conse-

quence, 𝑅(𝐶𝜙,𝜓) = 𝑅(𝑈 , 𝑉 ) ≥
√
𝜙𝜓.
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5 On the maximal correlation coefficient for the bivariate Marshall Olkin distribution

For the reverse inequality, note that 𝑈 is conditionally independent of 𝑉 given 𝑍 . As
a consequence, by Lemma 5.2.3,

𝑅(𝑈 , 𝑉 ) ≤ 𝑅(𝑈 , 𝑍)𝑅(𝑉 , 𝑍).

Note that (𝑈 , 𝑍) has joint cdf 𝐷𝜙(𝑢, 𝑣) = 𝑢1−𝜙(𝑢𝜙 ∧ 𝑣), and that, likewise, (𝑉 , 𝑍) has joint
cdf 𝐷𝜓. It hence remains to show that 𝑟(𝜉) ∶= 𝑅(𝐷𝜉 ) ≤

√
𝜉 for all 𝜉 ∈ (0, 1). In fact, we

will show 𝑟(𝜉) =
√
𝜉 , since we need ‘≥’ in the proof of ‘≤’.

We start by proving 𝑟(𝜉) ≥
√
𝜉 . For that purpose, reconsider the function 𝑓𝑘(𝑥) =

𝑥𝑘+1/(𝑘 + 1) with 𝑘 ≥ 0. A similar elementary calculation as for the proof of (5.2.2)
shows that

Corr(𝑓𝑘𝜉 (𝑆), 𝑓𝑘(𝑇 )) = 𝜉
√
(2𝑘 + 3)(2𝑘𝜉 + 3)
2𝑘𝜉 + 𝜉 + 2

, (𝑆, 𝑇 ) ∼ 𝐷𝜉 , (5.2.3)

which converges to
√
𝜉 for 𝑘 → ∞ and hence implies 𝑟(𝜉) ≥

√
𝜉 .

For the proof of 𝑟(𝜉) ≤
√
𝜉 , recall 𝑋, 𝑌 , 𝑍 from the beginning of the proof, and for

𝜉1, 𝜉2 ∈ (0, 1), let 𝑊̃ = 𝑍 , 𝑉̃ = 𝑌 1/(1−𝜉2) ∨ 𝑍1/𝜉2 and 𝑈̃ = 𝑋 1/(1−𝜉1) ∨ 𝑉̃ 1/𝜉1 , i.e.,

(𝑈̃ , 𝑉̃ , 𝑊̃ ) = (𝑋 1/(1−𝜉1) ∨ 𝑌 1/{𝜉1(1−𝜉2)} ∨ 𝑍1/(𝜉1𝜉2), 𝑌 1/(1−𝜉2) ∨ 𝑍1/𝜉2 , 𝑍).

A straightforward calculation shows that (𝑈̃ , 𝑉̃ ) has cdf𝐷𝜉1 , that (𝑉̃ , 𝑊̃ ) has cdf𝐷𝜉2 and
that (𝑈̃ , 𝑊̃ ) has cdf 𝐷𝜉1𝜉2 . Furthermore, 𝑈̃ and 𝑊̃ are conditionally independent given 𝑉̃ ,
whence, by Lemma 5.2.3,

𝑟(𝜉1𝜉2) = 𝑅(𝑈̃ , 𝑊̃ ) ≤ 𝑅(𝑈̃ , 𝑉̃ )𝑅(𝑊̃ , 𝑉̃ ) = 𝑟(𝜉1)𝑟(𝜉2). (5.2.4)

This implies monotonicity of 𝜉 ↦ 𝑟(𝜉). Furthermore, by setting 𝜉1 = 𝜉2 = 𝜉 , we get
equality in the previous display by Lemma 5.2.3, which yields

𝑟(𝜉) = 𝑟(𝜉2)1/2. (5.2.5)

Next, an application of Lemma 5.2.4 gives 𝑟(1/2) ≤ 2−1/2, which, in view of the previous
display, implies that 𝑟(2−1/2) = 𝑟(1/2)1/2 ≤ 2−1/4. Since we have already shown 𝑟(𝜉) ≥

√
𝜉

for all 𝜉 , we obtain that 𝑟(2−1/2) = 2−1/4.
For 𝑚 ∈ N, we may apply (5.2.4) 𝑚-times to obtain that

2−𝑚/4 ≤ 𝑟(2−𝑚/2) ≤ 𝑟(2−1/2)𝑚 = 2−𝑚/4,

whence 𝑟(2−𝑚/2) = 2−𝑚/4. Next, for any 𝑛 ∈ N, we may apply (5.2.5) (𝑛 − 1)-times to
obtain that

𝑟(2−𝑚/2
𝑛
) = 𝑟(2−𝑚/2

𝑛−1
)1/2 = 𝑟(2−𝑚/2

𝑛−2
)1/2

2
= ⋯ = 𝑟(2−𝑚/2)1/2

𝑛−1
= (2−𝑚/4)1/2

𝑛−1
= (2−𝑚/2

𝑛
)1/2.

We have hence shown that 𝑟(𝑥) =
√
𝑥 for all 𝑥 ∈  ∶= {2−𝑚/2𝑛 ∈ (0, 1) ∶ 𝑛, 𝑚 ∈ N}. For

any fixed 𝜉 ∈ (0, 1), we can choose sequences (𝑥𝑘)𝑘 , (𝑦𝑘)𝑘 in  converging to 𝜉 such that
𝑥𝑘 ≤ 𝜉 ≤ 𝑦𝑘 for all 𝑘. Hence, by monotonicity of 𝑟 , √𝑥𝑘 = 𝑟(𝑥𝑘) ≤ 𝑟(𝜉) ≤ 𝑟(𝑦𝑘) = √𝑦𝑘,
which implies 𝑟(𝜉) = 𝜉 by taking the limit for 𝑘 → ∞. This finalizes the proof.
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5.3 An application in extreme value statistics

The Marshall Olkin copula from (5.2.1) is easily seen to be max-stable, that is, we have

𝐶𝜙,𝜓(𝑢, 𝑣) = 𝐶𝜙,𝜓(𝑢1/𝑚, 𝑣1/𝑚)𝑚 ∀𝑢, 𝑣 ∈ [0, 1], 𝑚 ∈ N.

As a consequence, it is an extreme-value copula (Gudendorf and Segers, 2010) and may
hence appear as the weak limit copula of affinely standardized bivariate maxima. In
fact, it happens to occur as a limit in the following simple situation: let (𝑋𝑛)𝑛 denote an
independent and identically distributed (iid) sequence of random variables satisfying
the standard domain of attraction (DOA) condition (de Haan and Ferreira, 2006) that
(max𝑟𝑖=1 𝑋𝑖 − 𝑏𝑟)/𝑎𝑟 converges weakly to a non-degenerate limit distribution for 𝑟 → ∞,
where (𝑏𝑟)𝑟 ⊂ R and (𝑎𝑟)𝑟 ⊂ (0,∞) are suitable scaling sequences. In that case, by the
Fisher-Tippett-Gnedenko Theorem (Fisher and Tippett, 1928; Gnedenko, 1943), the limit
distribution is necessarily the generalized extreme value distribution with cdf 𝐺𝛾(𝑥) =
exp{−(1 + 𝛾𝑥)−1/𝛾 } for 𝑥 such that 1 + 𝛾𝑥 > 0 and defined by continuity if 𝛾 = 0; here,
𝛾 ∈ R denotes the extreme value index. Now, under the DOA condition, we have, for
any 𝜁 ∈ [0, 1] and writing 𝜁𝑟 = ⌊𝑟𝜁 ⌊,

lim
𝑟→∞

P(
max𝑟𝑖=1 𝑋𝑖 − 𝑏𝑟

𝑎𝑟
≤ 𝑥,

max𝜁𝑟+𝑟𝑖=𝜁𝑟+1 𝑋𝑖 − 𝑏𝑟
𝑎𝑟

≤ 𝑦) = 𝐺𝜁 ,𝛾(𝑥, 𝑦) ∶= 𝐶1−𝜁 ,1−𝜁 {𝐺𝛾(𝑥), 𝐺𝛾(𝑦)}

(5.3.1)

for all 𝑥, 𝑦 ∈ R; see, for instance, Lemma B.3 in Bücher and Zanger (2023). In fact, the
result in (5.3.1) even holds if the iid sequence is replaced by a stationary time series,
provided the long range dependence is suitably controlled.

The weak convergence in (5.3.1) is fundamental for the so-called sliding block max-
ima method in extreme value statistics. We refer to Bücher and Segers (2018a); Zou et al.
(2021); Bücher and Zanger (2023) among others for details on the general approach. As
it happens, even for time series data, the asymptotic behavior of respective estimators
is typically driven by certain empirical means satisfying a central limit theorem with
asymptotic variance formula given by

𝜎2sb(ℎ) ∶= 2 ∫
1

0
Cov(ℎ(𝑌1,𝜁 ), ℎ(𝑌2,𝜁 )) d𝜁 ,

where (𝑌1,𝜁 , 𝑌2,𝜁 ) ∶= (𝑌1, 𝑌2) ∼ 𝐺𝜁 ,𝛾 with 𝐺𝜁 ,𝛾 from (5.3.1) and where ℎ is square-integrable
with respect to 𝐺𝛾 . On the other hand, the traditional (disjoint) block maxima method
satisfies respective limit theorems with asymptotic variance given by

𝜎2db(ℎ) ∶= Var(ℎ(𝑌1)),

where 𝑌1 ∼ 𝐺𝛾 . The following theorem is essential for showing that the sliding block
maxima method is statistically more efficient than the traditional disjoint block max-
ima method (again, we refer to the aforementioned references). The first part can be
deduced from a technical result in Zou et al. (2021), see their Lemma A.10, but Theo-
rem 5.2.1 above offers the possibility for an elegant and short proof.
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5 On the maximal correlation coefficient for the bivariate Marshall Olkin distribution

Theorem 5.3.1. For ℎ∶ R → R with ∫ ℎ(𝑥)2 d𝐺𝛾(𝑥) < ∞, we have 𝜎2sb(ℎ) ≤ 𝜎2db(ℎ). Moreover,
equality holds if and only if ℎ is a function such that Corr(ℎ(𝑌1,𝜁 ), ℎ(𝑌2,𝜁 )) = 𝑅(𝐺𝛾,𝜁 ) = 1 − 𝜁 for
Lebesgue almost every value of 𝜁 ∈ [0, 1].

Proof. We have

𝜎2sb(ℎ) = 2 ∫
1

0
Cov(ℎ(𝑌1,𝜁 ), ℎ(𝑌2,𝜁 )) d𝜁 = 2𝜎2db(ℎ) ∫

1

0
Corr(ℎ(𝑌1,𝜁 ), ℎ(𝑌2,𝜁 )) d𝜁

≤ 2𝜎2db(ℎ) ∫
1

0
𝑅(𝐶1−𝜁 ,1−𝜁 ) d𝜁

= 2𝜎2db(ℎ) ∫
1

0
1 − 𝜁 d𝜁 = 𝜎2db(ℎ),

where we used Theorem 5.2.1 at the penultimate equality. The second statement is
immediate.
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6 Outlook

In this section we will provide a brief discussion of possible future research directions
based on the results obtained in the articles presented.

In Chapter 3 we have shown that U-statistics of block maxima are asymptotically
normal under mild assumptions; in particular an affine-linear transformation property
on the kernel function. The authors assume that this condition may be weakened to
only hold asymptotically and might be embedded in a suitable framework leading to
results with the same assertion but weaker conditions.
Furthermore, the limiting results are meaningful if the linear part of the U-statistic is
(asymptotically) non-degenerate. Otherwise, the weak convergence is against null and
thus one can expect to obtain faster rates depending on the level of degeneracy. Al-
ready for the classic i.i.d. situation the lines of argument change in a notable manner:
the limit distribution is derived via a spectral decomposition of the kernel in regard to
the underlying distribution. This method of proof requires restrictive assumptions on
the associated eigenfunctions and the validity is often out of reach to verify. In Leucht
(2012) the author presents new sufficient conditions comprising moment and kernel
smoothness constraints which are easier to verify. It is an interesting open question
in what way the results from Chapter 3 translate to degenerate settings comparable to
Leucht (2012) and to develop Cramér von Mises type tests based on block maxima.
The classic partial sum process 1/

√
𝑛∑⌊𝑛𝑠⌋

𝑖=1 𝑋𝑖 for 𝑠 ∈ (0, 1) and suitable observations
𝑋𝑖 whose limit distribution has been derived in Donsker (1951) can be transferred to
(dependent) U-statistics, see Bücher and Kojadinovic (2016). The latter reference es-
tablished consistent bootstrap procedures based on dependent multipliers to provide
asymptotic confidence intervals and demonstrated applications to change point detec-
tion. The proof techniques in Chapter 3 may be synthesized with the techniques of the
latter reference to allow generalizations to limit theorems for partial sum processes of
U-statistics of block maxima.
Furthermore, the results might be extended to general U-processes as in Nolan and Pol-
lard (1987) who pose abstract conditions on the function family which parameterizes
the U-process.

The main result of Chapter 4 provides formal bootstrap consistency of general lin-
ear block maxima estimators comprising popular estimators in extreme value statistics
as the GEV maximum likelihood estimator, pseudo/misspecified variants, probability
weighted moment estimators and method of moments based estimators. A natural ex-
tension of the results would be to consider the bootstrap consistency of U-statistics of
block maxima or more generally, asymptotically linear estimators based on block max-
ima. It is reasonable to assume that arguments from the proof of Propositions 2.5 and
3.2 in Bücher and Kojadinovic (2016) would be helpful.
A different scheme to Efron’s bootstrap is given by subsampling. Subsampling per-
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forms superior to bootstrapping twofold: First, fewer assumptions lead to formal con-
sistency results as drawing without replacement leads to true subsamples, (Politis and
Romano, 1994). Second, for rank based estimators, as the empirical copula, subsam-
pling was found to outperform the bootstrap, (Kojadinovic and Stemikovskaya, 2019).
In the disjoint block maxima setting this does indeed promise performance gains but
in the sliding counterpart ties do appear subasymptotically regardless of the resam-
pling method. Nevertheless, it is to be seen whether the advantages of the subsampling
method prevail in the sliding regime. Yet, a general problem in extreme value statistics
is the small number of effective samples which would result in a need for a sophisti-
cated choice of the subsample size 𝐵.
Additionally, practical improvements of the resampling methods in order to obtain con-
fidence intervals should be researched. In particular the recently introduced cheap
bootstrap might allow for obtaining asymptotic niveau 𝛼 confidence intervals while
requiring a considerably smaller amount of resamples, c.f. Lam (2022).
Finally, the introduction of simple non-stationarity scheme as in Chapter 3 that is, piece-
wise stationary time series, could be considered in the context of bootstrapping block
maxima estimators to improve flexibility of the methods. The techniques used in prov-
ing the consistency results invoke hope of easily transferring the arguments to this spe-
cific setting.

In Chapter 5 the maximal correlation coefficient of the two parameter Marshall Olkin
distribution has been derived and the important inequality linking sliding and disjoint
block maxima variances proven. The latter proof only works for one dimensional block
maxima, but the result has been used for multivariate block maxima. It is of theoretical
interest to derive the maximal correlation coefficient for distributions taking the form
as in Chapter 4 equation (4.2.3).

The all block maxima (ABM) method investigated in Oorschot and Zhou (2020) is a
permutation invariant method which differentiates it from all the other block maxima
methods in this thesis. The latter paper provided theory for i.i.d. settings and simu-
lation results for the dependent case which showed that the method performs better
even in the presence of dependence. Moreover, the ABM method ignores dependence
in the time series as it does not pertain ordering which is a crucial aspect in estimating
functionals of the dependence structure as copulas, extremal index, tail dependence in-
dex or Kendall’s 𝜏. Yet, if the extreme value index 𝛾 is of interest these drawbacks do
not apply. Thus, theory regarding formal bootstrap consistency results based on ABM
estimators would be of interest.

Lastly, it is an important task for extreme value statistics to develop methodology
in order to assess complex non-stationarities as appearing in climatology where the
changing climate has to be taken into account, see Philip et al. (2020, Sec. 4.3), Alexan-
der et al. (2006). First, the vanilla case of estimators based on observations 𝑀𝑡 already
following a non-stationary GEV(𝜇𝑡 , 𝜎𝑡 , 𝛾𝑡) distribution should be investigated. A promi-
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nent class of estimators would be given by conditional maximum likelihood estimators
with covariates; see Zanger et al. (2024) for a proof sketch. Following, a further exten-
sion into the direction of max domain of attraction assumptions should then be incor-
porated to allow for a more general framework. Finally, asymptotic comparisons for
different methods as disjoint, sliding and possibly all block maxima estimators in this
framework would be worthwhile to conduct.
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