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Introduction

Consider the following setting. Let G be an undirected graph with vertices V = {1, . . . , p},
p ∈ N. Let the distribution of the vector X0 = (X1, . . . , Xp) be determined by the graph-
ical model of G, where a vertex between Xi and Xj denotes conditional dependence given
X−i,j.

In the case that X is Gaussian with covariance matrix Σ and precision matrix Θ = Σ−1

we already heard often, that conditional independence of Xi and Xj given the rest of X
is equivalent to Θi,j = 0. Hence, in order to make inference about the graphical depen-
dence structure, estimating the precision matrix Θ is well motivated. Even though this
correspondence is generally not valid for other distributions, in the literature estimating
the precision matrix is still an active research field (e.g. for Subgaussian families).

In the paper(s) they consider Subgaussian random variables (random variables which
have a tail decay which is at least as fast as a Gaussian random variable, in order to
obtain concentration inequalities).

The papers do not focus on the traditional situation where n is big and the number of
coordinates p is fixed and small compared to n. Instead they investigate the situation of
p = pn and allow even for p = o(n), n = o(p). These settings are called large dimensional
and high dimensional, respectively. In those cases it is known that the sample covariance
does that perform well (it is singular with probability tending to 1). This among other
has sparked interest in researching different types of estimators for the precision matrix
in high dimensional statistics. Note, that if p >> n and the model is not sparse (mean-
ing only few parameters are ≡ 0) or has any other specification, which decreases the
dimension in a suitable sense, it is to my understanding, simply not possible to obtain
good estimators.

In the papers [Janková and van de Geer, 2019], [Rothman, 2008] presented here Graph-
ical LASSO-type estimators were investigated, which are penalized maximum likeli-
hood based estimators, which induce sparsity via a ℓ1 penalty (L(east)A(bsolute)S(hrinkage
and)S(election)O(perator)). It is called like that because firstly, norm penalization im-
plies for growing penalty λ a (norm) shrinking optimal parameter. And selection because
the choice of the ℓ1 norm leads to sparsity. As Holger said, in certain models, it shrinks
exactly to zero. Rothman et. al. called the LASSO Sparce permutation invariant co-
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variance estimator. Now there are two categories of LASSO-type estimation: The first
being global methods, which typically estimate the whole precision matrix (by a ℓ1 reg-
ularized log-likelihood). The second being nodewise methods, which estimate columns
(or smaller parts) of the precision matrix individually one by one.

1 Asymptotic Normality in the low dimensional
setting

It is instructive to investigate asymptotic normality for the model of p-dimensional
centered multivariate normal distributions with regular covariance matrix Σ0 ∈ Rp×p

and Θ0 = Σ−1 ∈ Rp×p, where p is fixed. Let Σ̂ := X tX/n denote the sample co-
variance matrix, where X := (X1, . . . , Xn)t denotes the design matrix of the samples
X i ∈ Rp; i = 1, . . . , n. Σ̂ is the MLE for Σ (Marius sketched the proof last time) and
by the functional invariance of the MLE we know that Θ̂ := Σ̂−1 (which exists with
probability 1 for absolutely continuous random variables by the Spectral Theorem) is
the MLE for Θ = Σ−1. We then have

Θ̂−Θ0 = −Θ0(Σ̂− Σ0)Θ0 + rem0, (1.1)

where rem0 = −Θ0(Σ̂− Σ0)(Θ̂−Θ0), since

Θ0(Σ̂− Σ0)Θ0 −Θ0(Σ̂− Σ0)(Θ̂−Θ0)

= −Θ0(Σ̂− Σ0)(Θ0 + Θ̂−Θ0)

= (I −Θ0Σ̂)Θ̂

= Θ̂−Θ0.

Now by the multivariate CLT (we will see why in a later proof) Σ̂ − Σ0 = OP(1/
√
n),

hence Θ̂−Θ0 = oP(1) and thus rem0 = oP(1/
√
n). The asymptotic normality now follows

from (1.1). Problems in the high-dimensional settings?
• The sample covariance becomes singular

• Since p = pn we have no multivariate CLT at hand.
A workaround is a non-sparsity penalized MLE called Graphical LASSO (GLASSO)
or SPICE:

Θ̂ := argminΘ=Θt,Θ>0 tr(Σ̂Θ)− log detΘ + λ∥Θ∥off,1,
where ∥Θ∥off,1 :=

∑
i ̸=j |Θi,j| is the induced ℓ1-norm without the diagonal as we do not

want to punish variances. In 2000 Knight and Fu [Knight and Fu, 2000] proved (in
the linear regression model) that among other the limiting distribution of the LASSO
estimator may have positive mass at 0 if 0 is the true parameter, this was complemented
by a paper of Pötscher and Leeb in 2014 [Pötscher and Leeb, 2009] Also the limiting
distribution (already in the low dimensional setting) depends in a difficult way on the
true parameter. This was a major difficulty in constructing confidence intervals. In
2014 van de Geer et. al. [van de Geer et al., 2014] introduced a method to remove the
sparsity in a certain sense, result in asymptotic normality:
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2 De-biasing the GLASSO

We will start by mentioning One Step Estimators, whose motivation and some properties
can be found in Van der Vaart [van der Vaart, 1998]. The idea is based on having a
prelimary or initial estimator and to improve upon in a certain way, when the estimator
is defined as a root of a problem (Z-estimator, often MLE).

Assume Rn is a real valued risk function and regular in a certain sense. The ordinary
MLE may then be translated to the root finding problem

Ṙn(Θ) = 0. (2.1)

Now introducing the penalty leads (often) to the root problem

Ṙn(Θ) + ξ(Θ) = 0, (2.2)

where ξ is a subgradient (generalization of the differential to convex functions) corre-
sponding to the penalty (in our case ∥ · ∥1 is convex). The idea is, to use the one step
estimator for (2.1) on the estimator obtained by (2.2) in a first order (linear) Taylor
expansion of Rn(Θ) around Rn(Θ̃), where the latter is an initial estimator:

0 = Rn(Θ) ≈ Rn(Θ̃) + Ṙn(Θ̃)(Θ− Θ̃)

⇐⇒ Θ = Θ̃− Ṙ−1
n (Θ̃)Rn(Θ̃).

In that way we "remove" the bias in the one step estimator procedure but keep the
sparsity in a sense, as the initial estimator was constructed as a penalized estimator.

Lets move on to the specific GLASSO case. We know that without penalization (2.1)
corresponds to

Σ̂Θ = I, (2.3)

(that’s the MLE and it’s functional invariance). But as mentioned (2.3) is with high
probability not solvable as Σ̂ becomes singular. Instead of the linear approximation we
require of our initial estimator Θ̃ that

Σ̂Θ̃− I = −η(Θ̃), (2.4)

where η(Θ̃) is small. One can now show by calculation that by (2.4)

Θ̃ + Θ̃ · η(Θ̃)−Θ0 = −Θ0(Σ̂− Σ0)Θ0 + rem0+remreg, (2.5)

where remreg := (Θ̂−Θ0)η(Θ̂). Using (2.4) yields η(Θ̃) = −(Σ̂Θ̃− I) and thus by (2.5)
we define the de-sparsified estimator:

Θ̂D := 2Θ̂− Θ̂Σ̂Θ̂, (2.6)

where Θ̂ is the GLASSO as the approximate inverse of Σ̂. Note, that compared to (1.1)
the remreg term is new and stems from the regularization. We will find that indeed the
remainder terms are small enough (essentially because of the Oracle inequalities Marius
talked about last time).
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3 Conditions

There are three central conditions under which asymptotic normality may be shown.

Condition 3.1 (Bounded Eigenvalues). The precision matrix Θ = Σ−1 exists and there
is a universal constant L ≥ 1 such that

1

L
≤ Λmin(Θ0) ≤ Λmax(Θ0) ≤ L,

where Λmin(·),Λmax(·) denote the minimal and maximal eigenvalue of a matrix, respec-
tively.

In the low dimensional case the former condition is more of a notation, as invertibility
of the Covariance Matrix is included in the model anyways. But in the large- and high-
dimensional setting p = pn → ∞ and thus both Λmin(Θ0) → 0 and Λmax(Θ0) → ∞ are
possible.

Condition 3.2 (Sub-Gaussian entries). The design matrix X has indepent rows X1, . . . , Xn ∈
Rp which have zero mean and each entry (of a vector) is Sub-Gaussian with a universal
parameter K > 0, meaning:

P(|X i
j| ≥ t) ≤ 2 exp

(
− t2

K2

)
, (t ≥ 0), i = 1, . . . , n, j = 1, . . . , p.

It is important, that the parameter is universal as there are pn many. There are 200
equivalent definitions of Sub-Gaussianity like bounds for exponential moments, Laplace
Transformation bounds etc; just keep in mind that this means fast tail decay which leads
to good concentration inequalities.

Recall V = {1, . . . , p}. To encode that the precision matrix is sparse, meaning it thas
a lot of zero entries, we denote the following unknown constants of Θ0 for j ∈ V :

Dj := {(i, j) : i ∈ V , i ̸= j,Θ0
i,j ̸= 0}, dj := |Dj|, d := max

j=1,...,p
dj.

The number dj is the degree of the node j and describes, how much information the i-th
coordinate has. Define

S :=

p⋃
j=1

Dj, s :=

p∑
j=1

dj,

where s ≤ p2 measures sparsity (if s is small Θ0 is sparse in our sense). In the sparse
settings we need s to increase slower with regards to n.

4 Asymptotic Normality of the Desparsified Global
LASSOs

Theorem 4.1 (Asymptotic Normality for High Dimensions). Assume Conditions 3.1,
3.2 and the sparsity Condition (p+ s)

√
d = o(

√
n/ log p). Then, for λ ≍

√
log p/n,
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∥ rem ∥∞ = oP(n
−1/2). (4.1)

Furthermore, for i, j = 1, . . . , p,

√
n
(Θ̂D −Θ0)i,j

σi,j

⇝ N (0, 1). (4.2)

Before we give a proof of the Theorem, we briefly mention two things: In order to
obtain confidence intervals, we need a consistent estimator for the asymptotic variance
σ2
i,j. For the Gaussian case there are estimators at hand, which were proven to be consis-

tent see [Janková and Van de Geer, 2017] Section 3.1. Secondly, recall the Weighted
GLASSO, which Marius introduced in the last talk:

Θ̂W := argminΘ=Θt,Θ>0 tr(Σ̂Θ)− log detΘ +
∑
i ̸=j

Ŵi,iŴj,j|Θi,j|,

where Ŵ 2 := diag(Σ̂). The weighting results in better oracle bounds (last talk) and this
allows for the weaker sparsity condition s

√
d = o(

√
n/ log p) :

Theorem 4.2. Assume Conditions 3.1, 3.2 and the sparsity Condition s
√
d = o(

√
n/ log p).

Then, for λ ≍
√

log p/n,

∥ rem ∥∞ = OP(n
−1/2).

Furthermore, for i, j = 1, . . . , p,

√
n
(Θ̂W −Θ0)i,j

σi,j

⇝ N (0, 1).

Since n = o(p) in the high-dimensional case, the latter Theorem might be understood
as a formulation for the p >> n regime, as there is no restriction on the growth of p
anymore.

Proof of Theorem 4.1. We will start by proving (4.1). For that we will need a result from
convex optimization applied to Θ̂. The Karush-Kuhn-Tucker Conditions (generalization
of First Order conditions in multivariate minimization problems to convex functions)
and the invertibility of Θ̂ by definition yield the existence of a Ẑ ∈ Rp×p with

Σ̂− Θ̂−1 + λẐ = 0,

where Ẑi,j = sign Θ̂i,j if θ̂i.j ̸= 0 and ∥Ẑ∥∞ ≤ 1. Multiplying the upper display by
Θ̂ yields Σ̂Θ̂ − I = −λẐΘ̂. Now recall remreg = (Θ̂ − Θ0)η(Θ̂) = −(Θ̂ − Θ0)(Σ̂Θ̂ − I).
Combining both with the decomposition in (2.5), Hölder’s inequality, and recall the
Oracle bounds:
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Theorem 1 (Oracle Bounds). Assume Conditions 3.1 and 3.2. Then, for λ ≍√
n/ log p,

∥Σ̂− Σ0∥∞ = OP(λ) = OP

(√
n/ log p

)
, |||Θ̂−Θ0|||1 = OP ((p+ s)λ) .

∥ rem ∥∞ ≤ ∥ rem0 ∥∞ + ∥ remreg ∥∞
= ∥Θ0(Σ̂− Σ0)(Θ̂−Θ0)∥∞ + ∥(Θ̂−Θ0)(Σ̂Θ̂− I)∥∞
= ∥Θ0(Σ̂− Σ0)(Θ̂−Θ0)∥∞ + ∥(Θ̂−Θ0)λẐΘ̂∥∞
≤ |||Θ̂−Θ0|||1∥Σ̂− Σ0∥∞|||Θ0|||1 + λ |||Θ̂−Θ0|||1 ∥Ẑ∥∞ |||Θ̂|||1
≤ O((p+ s)λ2) |||Θ0|||1 + 2λO((p+ s)λ) |||Θ0|||1.

(4.3)

The next step will be to prove

|||Θ0|||1 ≤
√
d+ 1Λmax(Θ0),

meaning to relate the matrix norm to the sparsity and eigenvalues of the matrix.

|||Θ0|||1 = max
1≤j≤p

p∑
i=1

|Θ0
i,j| = max

1≤j≤p
∥Θ0

j∥1

≤ max
1≤j≤p

√
d+ 1∥Θ0

j |2Hier Bild zu malen und ausführen

≤ max
1≤j≤p

√
d+ 1∥Θ0∥2

=
√
d+ 1Λmax(Θ0).

This in conjunction with (4.3) and Condition 3.1 gives

∥rem∥∞ = O(
√
d(p+ s)λ2) = o(

√
n/ log p · log p/n) = o(n−1/2),

this proves (4.1).
Normality in (4.2): By Slutsky, (4.1) and (2.5) we only need to show

√
n

Sn,i,j

Var(Sn,i,j)
→ N (0, 1),

where Sn := Θ0(Σ̂− Σ0)Θ0 = n−1Θ0X
TXΘ0 −Θ0.

First note that the i-th row of Θ0X
T is given by ((Θ0

i )
TX1, . . . , (Θ0

i )
TXn), where Xk =

(Xk
1 , . . . , X

k
p ) denotes the k-th observation. (Ausführen auf Blatt). By symmetry the

j-th column of XΘ0 is given by the j-th row of Θ0X
T transposed. Hence,

Sn,i,j =
1

n

(
(Θ0

i )
TX1, . . . , (Θ0

i )
TXn

)
·
(
(Θ0

j)
TX1, . . . , (Θ0

j)
TXn

)T
−Θ0

i,j

=
1

n

n∑
k=1

(Θ0
i )

TXk(Θ0
j)

TXk −Θ0
i,j

=:
1

n

n∑
k=1

Zi,j,k.
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Now we are in the Lindeberg-Feller CLT setting! In order to verify the Lindeberg
condition, we need an appropiate tail bound, which we will derive from Sub-Gaussianity
and universal Eigenvalue bounds:

First, note

|(Θ0
i )

TXk| ≤
p∑

j=1

|Θ0
i,jX

k
j |

≤ ∥Θ0
i ∥1 max

j : Θ0
i,j ̸=0

|Xk
j |

≤
√
d∥Θ0

i ∥2 max
j : Θ0

i,j ̸=0
|Xk

j |.

This yields in conjunction with Condition 3.2 (Sub-Gaussianity)

P(|(Θ0
i )

TXk| > t) ≤ P
(

max
j : Θ0

i,j ̸=0
|Xk

j | >
t√

d∥Θ0
i ∥2

)
≤

∑
j : Θ0

i,j ̸=0

P
(
|Xk

j | >
t√

d∥Θ0
i ∥2

)
≤ d max

j : Θ0
i,j ̸=0

P
(
|Xk

j | >
t√

d∥Θ0
i ∥2

)
= d ·O

(
exp

(
− t2

d∥Θ0
i ∥22

))
.

This in turn gives

P(|(Θ0
i )

TXk(Θ0
j)

TXk| ≥ t) = d ·O

(
exp

(
− t√

d∥Θ0
i ∥2

))
,

which after using ∥Θ0
i ∥2 ≤ ∥Θ0∥2 = Λmax(Θ

0) = O(1) by Condition 3.1 yields for Zi,j,k

[recall Zi,j,k = (Θ0
i )

TXk(Θ0
j)

TXk −Θ0
i,j]:

P(|Zi,j,k| > t) ≤ c1d exp
(
−

t− |Θ0
i,j|

c2d

)
≤ c1d exp

(
− t

c3d

)
, (4.4)

for c1, c2, c3 depending on the bound of the maximal eigenvalue and not on n (since |Θ0
i,j|

is bounded and d ≥ 1.)
We need to show

lim
n→∞

n∑
k=1

1

s2n
E[Z2

i,j,k1{|Zi,j,k| > εsn}] := lim
n→∞

Ln = 0,

where s2n := nσ2
i,j. For fixed n, i, j the Zi,j,k are i.i.d, thus

Ln =
1

σ2
i,j

E[Z2
i,j,k1{|Zi,j,k| > εsn}]
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and it is enough to show

E[Z2
i,j,k1{|Zi,j,k| > εsn}] = o(1). (4.5)

For a > 0 we may rewrite for a real random variable Y using Fubini∫
(Y 2 − a2)1{|Y | > a} dP =

∫ ∫
2u1{a < u < |Y |}1{|Y | > a} du dP

= 2

∫ ∞

a

P(|Y | > u) du,

(4.6)

now let a := ε
√
nσi,j, Y := Zi,j,k and rearrange (4.6) to obtain

E[Z2
i,j,k1{|Zi,j,k| > εsn}]

= ε2nσ2
i,jP(|Zi,j,k| > ε

√
nσi,j) + 2

∫ ∞

ε
√
nσi,j

P(|Zi,j,k| > u) du

=: R1 +R2.

Now for R1 the tail bound (4.4) yields (leaving out the constants for the sake of read-
ability)

R1 ≤ nd · exp
(
−

√
n

d

)
,

now by the sparsity condition we have
√
d(p + s) = o(

√
n/ log p), which gives d3/2 =

o(
√
n/ log p), as s ≥ d and thus d = o(n1/3/ log2/3 p). This results in

nd exp
(
−

√
n

d

)
≲ n4/3 exp

(
− n1/2−1/3

)
= o(1),

hence R1 = o(1). For R2 we obtain by using the tail bound (4.4) and substituting
u =

√
nεσi,jt (thus du =

√
nεσi,j dt)
R2

2
≤
∫ ∞

ε
√
nσi,j

ud exp
(
− u

d

)
du

=

∫ ∞

1

dnε2σ2
i,j exp

(
−

√
nεσi,jt

d

)
dt.

Now by (recall from before) d ≤ n1/3 for n ≥ n0

dnε2σ2
i,j exp

(
−

√
nεσi,jt

d

)
= n4/3ε2σ2

i,j exp
(
− n1/6εσi,jt

)
= C(ε, L)n−(9/6−4/3)t−9 ∈ L1([1,∞))

uniformly in n, since the variances are bounded from below and above by Conditions
3.1 and 3.2.
Now by the upper two displays and Dominated Convergence we have R2 = o(1) and
thus by (4.5) asymptotic normality holds.
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5 Nodewise LASSO

We will briefly introduce the Nodewise LASSO estimator for the precision matrix and
state an asymptotic normality result.

Idea: Estimate each column of the precision matrix by projecting every column of the
design matrix on the rest. Meaning that these are p iterated independent minimizations.

The motivation for the estimators is as follows: For each j = 1, . . . , p define the vector
γ0
j = {γ0

j,k, k ̸= j} as follows

γ0
j := argminγ∈Rp−1 E ∥Xj −X−j · γ∥22/n,

where X−j denotes the design matrix X without its j-th column. The error is called
noise level and defined as τ 2j = E ∥Xj − X−j · γ0

j ∥22/n. Now the following identity is
central:

Θ0
j = −(γ0

j,1, . . . , γ
0
j,j−1,−1, γ0

j,j+1, . . . , γ
0
j,p)

T/τ 2j . (5.1)

This allows for estimating the precision matrix by estimating γ0 and the corresponding
noise levels. The authors use for estimating γ0

j the square root LASSO with weighted
penalty:

γ̂j := argminγ∈Rp−1 ∥Xj −X−jγ∥2/n+ 2λ∥Ŵ−jγ∥1,

where recall Ŵ 2 := diag Σ̂. Now estimators for the noise level were defined as

τ̂ 2j := ∥Xj −X−j γ̂j∥22/n, τ̃ 2j := τ̂ 2j + λτ̂j∥γ̂j∥1.

Now plugging those into the identity (5.1) yields the nodewise estimator:

Θ̂N :=


1/τ̃ 21 −γ̂1,2/τ̃

2
1 . . . −γ̂1,p/τ̃

2
1

−γ̂2,1/τ̃
2
2 1/τ̃ 22 . . . −γ̂2,p/τ̃

2
2

...
... . . . ...

−γ̂p,1/τ̃
2
p . . . −γ̂p,p−1/τ̃

2
p 1/τ̃ 2p .


Now the same as before, the de-sparsified estimator nodewise LASSO can be defined as

Θ̂D,N := Θ̂N + Θ̂T
N − Θ̂T

N Σ̂Θ̂N .

Theorem 5.1. Assume Conditions 3.1, 3.2 and the sparsity Condition d = o(
√
n/ log p).

Then, for λ ≍
√

log p/n,

Θ̂D,N −Θ0 = −Θ0(Σ̂− Σ0)Θ0 + rem, ∥ rem ∥∞ = oP(n
−1/2).

Furthermore, for i, j = 1, . . . , p,

√
n
(Θ̂D −Θ0)i,j

σi,j

⇝ N (0, 1).

The proof refers to another paper [Janková and Van de Geer, 2017], where again or-
acle bounds are derived and Berry-Esseen gets used.
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Simulation Results and Discussion

• There were multiple papers comparing normal MLE to graphical LASSO, nodewise
LASSO, nodewise square root LASSO and their de-sparsified counterparts. First,
nodewise performed better than the whole graphical. Square root was comparable
to normal LASSO. Both in the de-sparsified and not de-sparsified setting this trend
was observable.

• Numerical results suggest to use nodewise LASSO estimation. Furthermore the
iterated nodewise LASSO estimation is computational less expensive than the
normal GLASSO.

• However the invertibility of Θ̂D,N has not been explored yet.

• The sparsity condition d = o(
√
n/ log p) was shown to be the minimal sparsity

condition to estimate Θ0 at parametric rate
√
n (in the Gaussian-model; not Sub-

Gaussian) in an Annals paper by Ren et. al. [Ren et al., 2015].

Takeaway

• Estimation of the precision matrix with parametric rate is possible, if there are
sparsity conditions

• Theoretically, the conditions are weaker if one uses nodewise LASSOs

• These sparsity conditions are essentially necessary to obtain parametric rates

• Central technique is the derivation of oracle bounds

• Shrinkage estimator might not be asymptotically normal but de-sparsifying may
result in asymptotically normal estimator and thus confidence intervalls are at
hand
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