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Motivation



Extreme Value Statistics: State of the Art

• Limit results for (empirical) processes over Maxima.

• CLT for maxima says: Class of distributional limits are mostly contained the GEV-family.

• GEV assumption only in the limit (Domain of Attraction).

• Later: For i.i.d.; then extended to stationary (with some mixing).

Where is the problem for many applications?
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Problem

Where is the problem for many applications?
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T-Rex says
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State of the Art climate models

Temperature Events

• Trend modelled as shift fit with GMST
• Mt = GEV(µt, σ0, ξ0)

µt = µ0 + α0 ×GMST(t).

Precipitation and Wind Events

• Distribution scales with GMST.
• Mt = GEV(µt, σt, ξ0)

µt = µ0 exp
[
α0 ×GMST(t)/µ0

]
, σt = σ0 exp

[
α0 ×GMST(t)/µ0

]
.

Combination (Shift and Scale fit) also possible (not yet standard though)
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Our Solution



What are we doing? I

Tackle non-stationarity by treating it as a covariate (fixed setting)

Statistical Model

1. {Yn,i}i,n rowwise Y-valued independent triangular array.
2. {xn,i}i,n ⊂ X deterministic triangular array (we observe those).

Yn,i ∼ Qn(xn,i, dy),

where Qn : X× B(Y) → [0, 1] is a regular sequence of Markov-Kernels.

Think of Yn,t = Maximal temperature of the t−th year (depends on t via the covariate GMST(t)).
Toy example:

Yn,i ∼
i

n
+N (1/n, 1).
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What are we doing? II

Tackle non-stationarity by treating it as a covariate (fixed setting)

Consider ’M-type estimators’

• m : H × X× Y → [−∞,∞], where H is a compact metric space. η is the parameter we want to
estimate. We observe x ∈ X, y ∈ Y.

• Criterion functions:

Mn(η) = Pnmη =
1

n

n∑
i=1

mη(xn,i, Yn,i) (subasymptotic)

M(η) =

∫
X

∫
Y
mη(x, y)Q(x, dy)PX( dx) (tentative limit).

Now (kinda) maximize the arg of Mn(·) to estimate the argmax η0 ∈ H of M(·)!

6 / 12



What are we doing? II

Tackle non-stationarity by treating it as a covariate (fixed setting)

Consider ’M-type estimators’

• m : H × X× Y → [−∞,∞], where H is a compact metric space. η is the parameter we want to
estimate. We observe x ∈ X, y ∈ Y.

• Criterion functions:

Mn(η) = Pnmη =
1

n

n∑
i=1

mη(xn,i, Yn,i) (subasymptotic)

M(η) =

∫
X

∫
Y
mη(x, y)Q(x, dy)PX( dx) (tentative limit).

Now (kinda) maximize the arg of Mn(·) to estimate the argmax η0 ∈ H of M(·)!

6 / 12



What are we doing? II

Tackle non-stationarity by treating it as a covariate (fixed setting)

Consider ’M-type estimators’

• m : H × X× Y → [−∞,∞], where H is a compact metric space. η is the parameter we want to
estimate. We observe x ∈ X, y ∈ Y.

• Criterion functions:

Mn(η) = Pnmη =
1

n

n∑
i=1

mη(xn,i, Yn,i) (subasymptotic)

M(η) =

∫
X

∫
Y
mη(x, y)Q(x, dy)PX( dx) (tentative limit).

Now (kinda) maximize the arg of Mn(·) to estimate the argmax η0 ∈ H of M(·)!

6 / 12



What are we doing? II

Tackle non-stationarity by treating it as a covariate (fixed setting)

Consider ’M-type estimators’

• m : H × X× Y → [−∞,∞], where H is a compact metric space. η is the parameter we want to
estimate. We observe x ∈ X, y ∈ Y.

• Criterion functions:

Mn(η) = Pnmη =
1

n

n∑
i=1

mη(xn,i, Yn,i) (subasymptotic)

M(η) =

∫
X

∫
Y
mη(x, y)Q(x, dy)PX( dx) (tentative limit).

Now (kinda) maximize the arg of Mn(·) to estimate the argmax η0 ∈ H of M(·)!

6 / 12



Considered estimators

All estimators which satisfy this asymptotic maximizer condition

Mn(η̂n) ≥ Mn(argmax
η̃∈H

M(η̃))− oa.s.(1).

Note: The MLE falls in that category!
Essence: η̂n should asymptotically maximize Mn(·).
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Result

Theorem Axel, Johan, Torben (2024+): Under some conditions we have that η̂n consistently estimates
η0 in the following sense

P
[
lim

n→∞
η̂n = η0

]
= 1,

where (again) η̂n is an estimator satisfying Mn(η̂n) ≥ Mn(η0)− oa.s.(1) and η0 = argmaxM(·).

That’s a very general result:

• Dependence on covariate allowed via x.

• Non-stationarity of the Yn,i possible via dependence on the Feller-Markov kernels Qn and xn,i.

• Even non regular models like “support changes with η” (think of GEV model or uniform model
X ∼ U(0, η)) allowed, since m = −∞ allowed.

• We can handle even more general estimators than M-estimators.
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Applications



Conditional MLE

• Model:
Yn,i ∼ Pθ(xn,i,η0),

• (Pθ : θ) is a parametric family (think of GEV shift/scale fit) with densities wrt to a σ−finite measure
ν.

• η0 is unknown.

• θ : H → Θ is a known link function (like the scale/shift fit functions).

• We observe Yn,i and the covariates xn,i.

• Qn ≡ Q = Pθ(·,η0) is constant in n in this example.
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Pairwise likelihood from multivariate extremes

• Now Y ⊂ Rd, Yn,i ∼ Pθ(xn,i,η0) as before

• Sometimes calulcating the d-variate density is expensive. Solution:

• Pairwise criterion function
mη(x, y) =

∑
(j,l)∈D2

log pθ(x,η)(j, l),

where D2 = {(j, l) : 1 ≤ j ̸= l ≤ d} and p
(j,l)
θ denotes the bivariate marginal (of d) density

corresponding to j, l coordinates.
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Optimum score estimation

• Fancy Data science
• Find a scoring rule S under which one calibrates a model.
• S takes two arguments P, y where P is a probability measure and y an observation.

S(P,Q) :=
∫
S(P, y) dQ(y).

• Identifiability of the model corresponds to assuming S(P, P ) > S(P,Q) for all Q ̸= P (unique
maximum).

• We then have the estimator

η̂n = argmax
η∈H

1

n

n∑
i=1

S(Pθ(xn,i,η), yi).

And quite some more examples (functional data . . . ).
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Outlook

• We have consistency (minimal property).

• Asymptotic normality next step (want confidence intervals and tests).

• Bootstraps?

• Dependence between the Yn,i (with mixing this shouldn’t be to much of a problem).
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Thank you



Conditions



Weak convergence regularities

1. There exists a non-degenerate RV X on X such that

1

n

n∑
i=1

δxn,i ⇝ PX ;

think of the uniform design in regression.

2. There exists a Markov kernel Q : X× B(Y) → [0, 1] such that x 7→ Q(x, dy) is weakly continuous
and such that (Qn(·, dy)n) converges continuously to Q(·, dy) in the weak topology.
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Identifiability

The asymptotic criterion function M has a unique point of maximum η0, that is for η ̸= η0

M(η) =

∫
X

∫
Y
mη(x, y)Q(x, dy)PX( dx) <

∫
X

∫
Y
mη0(x, y)Q(x, dy)PX( dx) = M(η0).
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Boundedness

1. The criterion function is bounded from above (may be unbounded below)

2. Qn is L2 sochastically dominated, that is, there exists W ∈ L2 with

∀t ≥ 0, n ∈ N, x ∈ X : Qn

(
x, {y ∈ Y : |mη0(x, y)| > t}

)
≤ P (W > t).
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Space and criterion function regularity

1. The metric spaces (X, dX) and (H, dH) are compact

2. The criterion function m is upper semicontinuous.

3. The function (x, y) 7→ mη0(x, y) is continuous PX,Y a.e.
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