Performs bootstrap resampling for various block maxima estimators (mean, variance, GEV parameters, quantile, return level) using either disjoint or sliding block methods.
Arguments
- xx
A numeric vector or array containing univariate samples. For multivariate cases, samples should be arranged in rows.
- est
A string specifying the estimator to apply. Must be one of
"mean"
,"var"
,"gev"
,"quantile"
, or"rl"
.- block_size
Integer. Size of each block used in the block maxima extraction.
- B
Integer. Number of bootstrap replicates to generate.
- type
Type of block bootstrapping:
"db"
for disjoint blocks or"sb"
for sliding blocks (internally approximated via circular blocks).- seed
Integer. Seed for reproducibility.
- p
Optional numeric value in (0,1). Required if
est = "quantile"
.- annuity
Optional numeric value > 1. Required if
est = "rl"
for return level estimation.
Value
A numeric vector with B
rows for scalar estimators. If est = "gev"
, a matrix with B
rows is returned. Each row contains 3 estimated GEV parameters (location, scale, shape).
Examples
if (requireNamespace("maxbootR", quietly = TRUE)) {
library(maxbootR)
set.seed(123)
x <- rnorm(100)
# Bootstrap mean using sliding blocks
boot_mean <- maxbootr(x, est = "mean", block_size = 10, B = 20, type = "sb")
# Bootstrap variance using disjoint blocks
boot_var <- maxbootr(x, est = "var", block_size = 10, B = 20, type = "db")
# Bootstrap 95%-quantile of block maxima using sliding blocks
boot_q <- maxbootr(x, est = "quantile", block_size = 10, B = 20, type = "db", p = 0.95)
}